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SYMPLECTIC REPRESENTATION OF A BRAID GROUP

ON 3-SHEETED COVERS OF THE RIEMANN SPHERE

Rolf-Peter Holzapfel

Communicated by I. Dolgachev

Abstract. We define Picard cycles on each smooth three-sheeted Galois
cover C of the Riemann sphere. The moduli space of all these algebraic
curves is a nice Shimura surface, namely a symmetric quotient of the projective
plane uniformized by the complex two-dimensional unit ball. We show that
all Picard cycles on C form a simple orbit of the Picard modular group
of Eisenstein numbers. The proof uses a special surface classification in
connection with the uniformization of a classical Picard-Fuchs system. It
yields an explicit symplectic representation of the braid groups (coloured or
not) of four strings.

Preface. Why we called the class of two-dimensional Shimura varieties,
which are not Hilbert modular, “Picard modular surfaces”? In the mean time the
name has been generally accepted, see e.g. Langlands (and others) [11]. On the
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one hand Picard worked on special Fuchsian systems of differential equations;
on the other hand Shimura [17] introduced and investigated moduli spaces of
abelian varieties with prescribed division algebra of endomorphisms, which are
called (complex) “Shimura varieties” after some work of Deligne. One needs
a chain of conclusions in a special case in order to connect both works. Picard
found ad hoc on certain Riemann surfaces ordered sets of cycles, which we will call
“Picard cycles” below. Quotients of integrals along these cycles solve (completely)
a special Fuchsian system of differential equations. The basic solution consists
of two multivalued complex functions of two variables. The multivalence can be
described by the monodromy group of the system. By Picard-Lefschetz theory,
actually described in Arnold (and others) [2], the monodromy group acts on the
homology of an algebraic curve family respecting Picard cycles. In [8, Lemma
2.27] we announced that the action on Picard cycles is transitive and, moreover,
coincides with the action of an arithmetic unitary group U((2, 1), O), O the ring of
integers of an imaginary quadratic number field K. This is a key result. Namely,
the unitary group is the modular group of the Shimura surface of (principally
polarized) abelian threefolds with K-multiplication of type (2, 1). It parametrizes
via Jacobians the isomorphy classes of the Riemann surfaces Picard started with.
The aim of this article is to give a complete proof of the mentioned key result.
It joins some actual and old mathematics. As a consequence one gets a solution
of the relative Schottky problem for smooth Galois coverings of P1(C) (Riemann
sphere) of degree 3 and genus 3.

1. Basic facts, notations and definitions. We consider smooth com-
pact complex curves (Riemann surfaces) C of genus 3 which are three-sheeted
Galois coverings of the projective line (Riemann sphere) P1. Let g be a generator
of G = Gal(C/P1) ∼= Z/3Z. Then G acts on the homology group H1(C, Z) and
on the vector space H0(C,ωC) of regular differential forms. We have

rankZH1(C, Z) = 6, dimC H0(C,ωC) = 3.

Since P1 has only the trivial regular differential forms, the action of G on H0(C,ωC)
must be free (outside 0). Therefore, by Poincaré duality, G acts freely on
H1(C, Z), too (outside 0). The ineffective kernel of the group ring Z[G] with
respect to the action on H1(C, Z) is the ideal generated by t := 1 + g + g2.
Namely, gt = t because g3 = 1. Therefore, for each 0 6= α ∈ H1(C, Z) it holds
that gtα = tα, hence tα = 0 because of the free action of g.

Now it is clear that the quotient ring Z[G]/(1+g+g2) is isomorphic to the
ring O = OK of integers of the imaginary quadratic number field K = IQ(ρ), ρ a
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primitive 3-rd unit root. On this way H1(C, Z) is endowed with the structure of a
torsion free O-module of rank 3. We used the well-known fact that H1(C, Z) is a
torsion free abelian group. Since O is a principal domain, H1(C, Z) is isomorphic
to O3 as O-module.

With Z[G] ∼= Z[T ]/(T 3−1) it is easy to check that Z[G]∗ = {±1,±g,±g2}
is the unit group. For this purpose write an element of Z[G] as ε = a+bg+m(1+
g + g2), a, b,m ∈ Z, set

E(T ) = a + bT + m(1 + T + T 2)

and look for the existence of a polynomial

F (T ) = c + dT + n(1 + T + T 2), c, d, n ∈ Z,

such that ρ is a zero of E(T )F (T ) − 1. This happens iff a + bρ is a unit in O∗

(with inverse c + dρ). Notice that 1 + ρ + ρ2 = 0.

If (α1, α2, α3) is an O-basis of H1(C, Z), then

(1.1) (α1, α2, α3, g1α1, g2α2, g3α3), g1, g2, g3 ∈ Z[G]∗ \ {±1},

is a Z-basis. Namely, we know that gj ∈ {±g,±g2}. Now it is clear that

Oαj = (Z + Zρ)αj = Zαj + Zgjαj , j = 1, 2, 3,

and we get the above Z-basis.

The intersection product of (oriented) cycles on C is denoted by ◦. It
is skew-symmetric, non-degenerated with values in Z and unimodular, see [5].
Therefore there exists a normal basis (α1, · · · , α6) of H1(C, Z) defined by the
condition

(αi ◦ αj) = I, I :=

(
O E3

−E3 O

)
.

The set of normal bases of H1(C, Z) is a Sp(6, Z)-orbit of (any) one of them,
where Sp(6, Z) is the integral symplectic group

Sp(6, Z) = {S ∈ IGl6(Z);SItS = I}.

The Galois group action on H1(C, Z) is compatible with the intersection product,
that means (gα) ◦ (gβ) = α ◦ β for all cycles α, β. In this sense the Z[G]− and
the O-action is compatible with ◦.
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Picard observed in [13] that there is a nice normal basis of the form (1.1)
with g1 = −g, g2 = g, g3 = g2, up to transposition of the third and fourth
element. To make it visible he used the classical presentation of C as Riemann
surface consisting of three exemplars of P1 (sheets) connected along 4 cuts joining
4 of the branch points t1, t2, t3, t4 with the fifths one ∞, say, without loss of
generality. The number k = 5 of branch points is correct because of the Hurwitz
genus formula:

−4 = Euler number of C = |G| · Euler number of P1 − k(3 − 1) = 3 · 2 − 2k.

In picture (1.2) we draw as example a non-trivial oriented cycle going
through the cuts from one sheet to another.

third sheet

second sheet

first sheet
(1.2)

Definition 1.3. An ordered set of Picard cycles is a normal basis of
H1(C, Z) of the form

∗(α1, α2, α3) := (α1, α2,−gα1, α3, gα2, g
2α3).

It is also called a Picard basis of H1(C, Z).

Lemma 1.4. (Picard [13]) Picard cycles exist on C.

For a proof we reproduce in picture (1.5) one set of them in the style of
(1.2).
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(1.5)

�

Let C for a moment be an arbitrary smooth (compact complex algebraic)
curve of genus 3. The choices of a normal basis α = (α1, . . . , α6) of H1(C, Z)

and of a C-basis ~ω =




ω1

ω2

ω3


 of H0(C,ωC), ωC the sheaf of regular differential

forms, define a period matrix

Π = Π(α, ~ω) =

∫

α
~ω =

(∫

αj

ωi

)
∈ Mat3×6(C).

satisfying Riemann’s period relations

(1.6) ΠItΠ = O,−iΠItΠ < 0.

All matrices Π ∈ Mat3×6(C) satisfying (1.6) are shortly called period matrices.
They appear precisely as period matrices of principally polarized abelian three-
folds, see [5, II.6]. Via base change on H0(C,ωC) each basis α of H1(C, Z) defines
a coset

Π(α) = IGl3(C)Π(α, ~ω) ∈ IGl3(C) \ {period matrices}.
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The separation of Π = (Π1|Π2) of each period matrix into two quadratic matrices
defines a map Π 7−→ Π−1

1 Π2 ∈ IGl3(C). Because of the period relations (1.6) the
image lies in the hermitian symmetric space (Siegel’s upper halfspace)

H3 = {Ω ∈ IGl3(C); tΩ = Ω, Im Ω > 0}.

The above correspondence defines a bijective map

(1.7) IGl3(C) \ {period matrices} ⇐⇒ H3

which gives to the set on the left side a smooth complex structure. We call H3

shortly the period space of principally polarized abelian threefolds. The subset
coming from period matrices of smooth curves is denoted by H∗

3. This is an open
dense analytic subspace of H3. We call it the period space of smooth genus 3
curves.

The Z-module ΠZ6 generated by the colums of Π is the corresponding
period lattice. The abelian variety J(C) = C3/ΠZ6 is called the Jacobian variety
of C. The intersection product on H1(C, Z) considered as element π of

HomZ(Λ2H1(C, Z), Z) ∼= H2(J(C), Z)

is the canonical (principal) polarization of J(C). We call the pair Jac C =
(J(C), π) shortly the Jacobian of C. The following Torelli theorem is important:

Theorem 1.8 (Torelli, see e.g. [5, II.7]). For smooth curves C, C ′ it
holds that

Jac C ∼= Jac C ′ iff C ∼= C ′.

This theorem allows to endow the set of isomorphy classes of curves genus
3 with an algebraic structure. First recall from [3] that the Baily-Borel compact-
ification Â3 of A3 := H3/Sp(6, Z) is an algebraic variety. A3 is the moduli space
of principally polarized abelian threefolds. It parametrizes precisely the latter
objects. A Zariski-open part A∗

3 of A3 parametrizes precisely the Jacobians of
smooth curves of genus 3, hence, by the Torelli theorem, the isomorphy classes
of these curves.

Since the multivalence of period matrices of a curve C comes precisely
from C-base changes in H0(C,ωC) and Z-base changes of normal bases of H1(C, Z)
realized by integral unimodular symplectic transformations, we can identify A∗

3

with the space of double cosets IGl3(C) \ {period matrices}∗/Sp(6, Z), where the
star ∗ indicates that we restrict to period matrices coming from smooth curves.
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For the relative Schottky problem it is important to notice that we have the
following Zariski-open embeddings

(1.9)
IGl3(C) \ {period matrices}∗/Sp(6, Z)⊂ IGl3(C) \ {period matrices}/Sp(6, Z)

‖ ‖
A∗

3 A3

2. Picard period matrices. We want to prove that our smooth 3-
sheeted Galois coverings of genus 3 of P1 have a nice moduli space sitting in A∗

3

as (Zariski-closed) subvariety. But let us first look for a period space for these
curves together with an open analytic embedding into H∗

3. For this purpose we
define with a glance to Definition 1.3 the C-linear embedding ∗ : C3 −→ C6 by

(2.1) a = (a1, a2, a3) 7−→ ∗a := (a1, a2,−ρa1, a3, ρa2, ρ
2a3).

Set J =
1√
−3

I. It defines a hermitian structure on C6 of signature (3,3). Its

restriction along ∗ yields an hermitian space (C3, <,>). An easy calculation
shows that its signature is (2,1). More precisely (see [8]), it holds that

(2.2) 〈u, v〉 = ∗uJ t∗v = u




0 0 ρ
0 1 0
ρ 0 0


 tv.

Definition 2.3 A period matrix of the form

Π =




∗a
∗b
∗c


 , a, b, c ∈ V := C3 ( row vectors),

is called a Picard period matrix.

An easy calculation (see [8]) shows that the Riemann period relations
(1.6) transfer to the following geometric criterion.

Lemma 2.4. A matrix Π ∈ Mat3×6(C) is a Picard period matrix if and
only if it has the form

Π =




∗a
∗b
∗c
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with the properties

(−) 〈a, a〉 < 0,

(⊥) a
⊥ = Cb + Cc,

where ⊥ denotes orthogonality in V with respect to the hermitian metric <,>.

Proposition 2.5 Let C be a smooth 3-sheeted Galois covering of P1 of
genus 3. Then C has a Picard period matrix.

P r o o f. One establishes a period matrix Π = Π(α, ~ω) = Π(∗α, ~ω) of C by
means of Picard cycles ∗α in the sense of Definition 1.3 and a basis of eigenvectors

~ω =




ω1

ω2

ω3


 of g operating on H0(C,ωC). Since G acts (outiside of 0) freely on

H0(C,ωC), the eigenvalues of g must be different from 1. If η is an eigenform
of eigenvalue ρ or ρ2, then g∗η is eigenform of eigenvalue ρ2 or ρ, respectively.
Without loss of generality we can assume that the eigensubspace of H0(C,ωC)
of eigenvalue ρ is one-dimensional. Otherwise we could change from generator g

of G to g2. Now let ~ω =




ω1

ω2

ω3


 be an eigenbasis of H0(C,ωC) and ∗α a Picard

basis of H1(C, Z). It is a matter of linear algebra (see [13]) to verify that the
period matrix Π(∗α, ~ω) is of Picard type. �

We call a complex line L in V negative, if it belongs to the negative cone

V− := {u ∈ V ; 〈u, u〉 < 0}.

By Lemma 2.4 Picard period matrices correspond via a 7−→ L := Ca to orthogonal
decompositions

V = L ©⊥L⊥, L ⊂ V a negative line .

The linear group IGl2 = IGl2(C) acts on L⊥. A basis of L⊥ is uniquely determined
up to IGl2-equivalence. Knowing L⊥, the basis vector a of L is uniquely determined
up to IGl1-equivalence. So from a ∈ V− one recovers uniquely the corresponding
Picard matrix up to IGl1 × IGl2-equivalence (According to the last two rows of
Π in Lemma 2.4 we use the sign of complex conjugation in the second factor).
Moreover, we get a bijective correspondence

(2.6)
IGl1 × IGl2 \ {Picard matrices} ∼−→B := PV− ⊂ PV ∼= P2.

Π 7−→ Pa
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The space B is nothing else but a projective transform of the standard complex
unit ball

B0 = {(x, y) ∈ C2; |x|2 + |y|2 < 1} ⊂ C2 ⊂ P2.

It endows the set on the left side of (2.6) with a complex structure in a natural
manner. For such a transform an element of IGl3(O) can be used, see (2.2).

With diagonal embedding of IGl1× IGl2 into IGl3 and natural identifications
we get inclusions of left cosets

(2.7)
B = IGl1 × IGl2 \ {Picard period matrices} ⊂ IGl3\{period matrices}=H3,

B∗ := IGl1 × IGl2 \ {Picard period matrices}∗ ⊂ IGl3\{period matrices}∗=H∗
3,

where the star ∗ indicates again that we take only period matrices coming from
smooth genus 3 curves. Via the correspondence Π = (Π1|Π2) 7−→ Π−1

1 Π2 de-
scribed in (1.7) the ball B appears as analytic subvariety in H3. It can be de-
scribed by some algebraic equations of degree at most 2 in the coefficients of H3-
matrices. These equations have coefficients in K. Explicitly, this K-quadratic
algebraic embedding has been described by Picard in [13]. Now we fix a smooth
Galois covering C of genus 3 and a Picard basis ∗α = ∗(α1, α2, α3) of H1(C, Z).

Definitions-Notations 2.8. The subgroup of all elements of Sp(6, Z)
sending any Picard basis of H1(C, Z) to another Picard basis is denoted by
Sp(6, Z)Pic. The subgroup of Sp(6, Z) generated by all elements sending ∗α to a
Picard basis of H1(C, Z) is denoted by Sp(6, Z)α. The arithmetic group

(2.9) U((2, 1, ), O)=U(<,>, O)={γ ∈ IGl3(O); 〈uγ, vγ〉=〈u, v〉 for all u, v∈C3}
is called the Picard modular group of K with respect to <,>.

With the help of (2.2) it is easy to see that U(<,>, O) is a IGl3(O)−conju-
gate of U((2, 1), O) which is originally defined by means of the hermitian metric
corresponding to the diagonal matrix diag(1, 1,−1) instead of <,>. In this sense
we use the identifying notation in (2.9). The group U((2, 1), O) acts on B0 but
U(<,>, O) acts on B. The above identification goes conform with an identification
of B0 and B. We identify H1(C, Z) with O3, for example by means of the O-basis
α. Then we get O3-representations

Sp(6, Z)Pic ⊆ Sp(6, Z)α ⊆ IGl3(O).

We want to prove now, that these representations are unitary. The proof of
Proposition 2.5 shows that

Π = Π(∗α, ~ω) =




∗a
∗b
∗c


 ,
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~ω =




ω1

ω2

ω3


 an eigenbasis of g of eigenvalues ρ, ρ2 in this order, is a Picard

matrix. If γ ∈ Sp(6, Z)α ⊆ IGl3(O) is one of the generators sending ∗α to the
Picard basis ∗(αγ), then also

Π(∗(αγ), ~ω) =




∗(aγ)

∗(bγ)

∗(cγ)




is a Picard period matrix. Since both ∗α and ∗(αγ) are normal bases, we can
find a symplectic matrix Σ ∈ Sp(6, Z) such that ∗(αγ) = (∗α)Σ, hence

Π(∗(αγ), ~ω) = Π(∗α, ~ω)Σ

or 


∗(aγ)

∗(bγ)

∗(cγ)


 =




∗a
∗b
∗c


Σ.

Therefore for each vector u ∈ {a, b, c} ⊂ C3 it holds that ∗(uγ) = (∗u)Σ, and for
each pair u, v of the same set we get

〈uγ, vγ〉 = ∗(uγ)J t∗(vγ) = (∗u)ΣJ tΣt∗v = (∗u)J t∗v = 〈u, v〉

because Σ is symplectic, hence ΣJ tΣ = J . This means that γ belongs to
U((2, 1), O). Altogether we have inclusions

(2.10) Sp(6, Z)Pic ⊆ Sp(6, Z)α ⊆ U((2, 1), O) ⊂ IGl3(O).

3. Monodromy groups. Now consider the algebraic curve family C/T ⊂
P2 × T/T, T the 4-dimensional affine space, T = T (C) = C4, which fibres are
the projective closures Ct in P2 of the affine plane curves defined by the equations
Y 3 = (X − t1)(X − t2)(X − t3)(X − t4) for each t = (t1, t2, t3, t4) ∈ T . The fibre
curve Ct is smooth if and only if t does not belong to one of the six hyperplanes
Hjk : tj = tk, 1 ≤ j < k ≤ 4, of T . Let T ∗ denote the complement of these
hyperplanes in T . The restricted subfamily C∗/T ∗ over T ∗ is smooth. Each fibre
is a smooth Galois covering of P1 of genus 3. The Galois action comes from
(x, y) 7−→ (x, ρy). For the genus one has to apply the genus formula

genus (D) = (d − 1)(d − 2)/2
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for smooth curves D ⊂ P2 of degree d to our quartics Ct with homogeneous
equations

(3.1) Ft(W,X, Y ) = WY 3 − (X − t1W )(X − t2W )(X − t3W )(X − t4W ).

The space T ∗ is the configuration space of braids with 4 strings. For definitions
and elementary properties we refer to [6]. The symmetric group S4 of four ele-
ments acts on T ∗ by permution of coordinates. It defines an unramified Galois
covering T ∗ −→ T ∗/S4, hence an exact sequence with fundamental groups

(3.2) 1 −→ π1(T
∗) −→ π1(T

∗/S4) −→ S4 −→ 1.

The fundamental group of T ∗/S4 is isomorphic to the (Fox) braid group of (four)
strings. We keep in mind number 4 of strings and use the notation

Z = π1(T
∗/S4) ∼= π1(T

∗/S4, P0), P0 ∈ T ∗/S4.

The coloured braid group Zcol, or (Artin) group of coloured strings, consists of
braids with identical permutation of starting and end points of strings. For a
good imagination a typical element of Zcol is drawn in picture (3.3).

(3.3)

The coloured braid group is isomorphic to the fundamental group of the
configuration space T ∗.

Zcol = π1(T
∗) ∼= π1(T

∗, τ), τ ∈ T ∗.

So we have an obvious version

(3.4) 1 −→ Zcol −→ Z −→ S4 −→ 1
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of the exact sequence of abstract fundamental groups (3.2), which is called the
braid group sequence.

The action of braid groups on the homology group H1(Ct, Z) of a curve
Ct which belongs to the smooth curve family C∗ over T ∗ is nicely explained in
[2]. We restrict ourselves to the curve family (3.1). All the homology groups
H1(Ct, R) or H1(Ct, C) can be considered as fibres of a (locally trivial) fibration
H1(C

∗, R) or H1(C
∗, C) over T ∗ with the embedded local system H1(C

∗, Z). Each
path w in T ∗ joining the points t and s, say, induces an isomorphism

(3.5) Tw : H1(Ct, Z)
∼−→ H1(Cs, Z).

via cycles one gets explicit representations

(3.6) Zcol = π1(T
∗) −→ Aut H1(Ct, Z), Z = π1(T

∗/S4) −→ Aut H1(Ct, Z).

It is quite clear that the isomorphisms (3.5) preserve the intersection product
of oriented cycles. Therefore we dispose on natural symplectic representations.
Moreover, also relations β = ±gα, g a generator of the Galois group of Ct −→ P1,
α, β ∈ H1(Ct, Z), are preserved. With the notations of (2.10) we get group
homomorphisms

(3.7) Zcol=π1(T
∗) ⊂ Z=π1(T

∗/S4) −→ Sp(6, Z)Pic ⊆ Sp(6, Z)α ⊆ U((2, 1), O)

Definition 3.8. The image of Z = π1(T
∗/S4) in U((2, 1), O) is called the

monodromy group of the family C∗/T ∗. The corresponding images of subgroups
U of Z are denoted by Mon U .

Next we will restrict the curve family to the subspace of T ∗
0 defined by

T0 := {t = (t1, t2, t3, t4) ∈ T ; tr(t) := t1 + t2 + t3 + t4 = 0}, T ∗
0 := T ∗ ∩ T0.

The Tschirnhaus map p = id − 1

4
δ ◦ tr, δ : C −→ T = C4 the diagonal

embedding, projects T onto T0 and T ∗ onto T ∗
0 . The fibres of p are isomorphic

to C. For fibre spaces E −→ X with fibres isomorphic to F one has a long exact
sequence of homotopy groups

(3.9) . . . −→ πn(F ) −→ πn(E) −→ πn(X) −→ πn−1(F ) −→ . . .

The application to T ∗ −→ T ∗
0 and to T ∗/S4 −→ T ∗

0 /S4 around n = 1 yield
isomorphisms

(3.10) π1(T
∗) ≡ π1(T

∗
0 ), π1(T

∗/S4) ∼= π1(T
∗
0 /S4).
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If we restrict C to T ∗
0 , then no homomorphism (3.6) change to

(3.11) Zcol = π1(T
∗
0 ) −→ Aut H1(Ct, Z), Z = π1(T

∗
0 /S4) −→ Aut H1(Ct, Z),

for t ∈ T0 and the representations (3.7) are the same as

(3.12) Zcol=π1(T
∗
0 )⊂Z=π1(T

∗
0 /S4) −→ Sp(6, Z)Pic⊆Sp(6, Z)α ⊆ U((2, 1), O).

Observe that the action of U((2, 1), O) on the ball B is not effective. The
ineffective kernel is the cyclic group of order 3 generated by ρE, E the unit matrix
with 3 rows. We will denote it simply by 〈ρ〉. For the sake of precise results and
considerations we compose the representation homomorphisms (3.12) with the
natural group epimorphism P : U((2, 1), O). So we get projective representations

(3.13) Zcol ⊂ Z −→ PMonZ ⊆ PU((2, 1), O).

Next we show that the ineffective kernel 〈ρ〉 is not lost in this composition. The
projective space PT0 = (T0 \ {0})/C∗ is identified with the projective plane P2.
The image of T ∗

0 along the quotient map T0 \ {0} −→ P2 is shortly denoted by
P∗

2. The complement P2 \ P∗
2 consists of six projective lines Lij , 1 ≤ i < j ≤ 4

going through pairs Pi, Pj ∈ P2 of a quadruple {P1, P2, P3, P4} of four points on
P2 in general position:

P∗
2 = P2 \ ∆, ∆ =

⋃

1≤i<j≤4

Lij .

The fibration T ∗
0 −→ P∗

2 with fibres isomorphic to C∗ yields

(3.14) Z ∼= π1(C
∗) −→ Zcol = π1(T

∗
0 ) −→ π1(P

∗
2) −→ 1 = π0(C

∗)

as part of the corresponding long exact homotopy sequence (3.9).
Now fix t ∈ T ∗

0 . All curves Cµt, µ ∈ C∗, are isomorphic because the

corresponding equations can be written as (µ−1/3Y )3 =
4∏

i=1

(X−ti). The generator

of π1(C
∗) is represented by the simple loop µ(r) = e2πir, 0 ≤ r ≤ 1, on C∗ around

0. It transforms each cycle α = {(x(λ), y(λ)); 0 ≤ λ ≤ 1}, on Ct to the cycle
{(x(λ), ρ−1/3y(λ)); 0 ≤ λ ≤ 1} and induces a non-trivial 〈ρ〉-action on H1(Ct, Z).
We proved the first part of the following

Lemma 3.15. The image of the unitary representation
Zcol −→ U((2, 1), O) contains 〈ρ〉. The projective unitary representation
Zcol = π1(T

∗
0 ) −→ PU((2, 1), O) factors through π1(P

∗
2).
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For the proof of the second part we refer to the original paper of Pi-
card [13]. Modern approaches can be found in the papers [16], [12] of Shiga and
Mostow–Deligne. Picard and Shiga work with the subfamily C∗

01/T
∗
01 of C∗/T ∗

with fixed t3 = 0, t4 = 1, in the base space. The restricted base space T01 can be
identified with P∗

2. All isomorphism classes of smooth Picard curves are repre-
sented by the fibres of this subfamily, each with finitely many representatives. �

Now consider the principal ideal (
√
−3) of O generated by

√
−3 (or ̺−̺2).

Because of the prime decomposition (3) = (
√
−3)2 in O it holds that O/(

√
−3)

is the Galois field F3 = Z/3Z. The congruence subgroup Γ(
√
−3) of the prime

ideal
√
−3 is defined as kernel of the reduction homomorphism

Γ = U((2, 1), O) −→ U((2, 1), O/(
√
−3) = U((2, 1), F3).

The latter group is isomorphic to S4. So we despose on an exact sequence

(3.16) 1 → Γ(
√
−3) → Γ → S4 → 1.

Proposition 3.17. With the above notations we have a commutative
diagram of group homomorphisms

(3.18)

Z −→−→ MonZ ⊂ Sp(6, Z)Pic ⊂ Sp(6, Z)α ⊂ Γ

(S4) ↑ ↑ ↑ (S4)

Zcol −→−→ MonZcol →֒ Γ(
√
−3)

↑ ↑

〈ρ〉 =−→ 〈ρ〉

with vertical inclusions.

P r o o f (Idea). The upper row comes from (3.12) and the lower vertical
embeddings from (3.16) and Lemma 3.15. The notation (S4) means that the
corresponding factor groups are isomorphic to S4. It remains to prove that the
monodromy group MonZcol sits in Γ(

√
−3). This has been checked already by

Picard [13]. At his time the basic notions of algebraic topology were unknown. In
our modern language he worked in the following manner: It is clear that it is only
necessary to check that the unitary image of a suitable finite system of generators
of Zcol consists of Γ(

√
−3)-matrices. Not knowing braid and fundamental groups,

but with a good feeling preparing the corresponding later established theores, he
picked out suitable generators of π1(P

∗
2) = π1(T

∗
01). One has to pull them back
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to Zcol along the middle map of the sequence (3.14). Together with the image of
π1(C

∗) we get generators of the coloured braid group. After checking the action
of on a special Picard basis α of H1(Ct, Z) ≃ O3 it is not dificult to see that the
unitary images of these generators belong to Γ(

√
−3), see also [16]. For one of the

generators we explained the procedure carefully proving the first part of Lemma
3.15. �

Warning: At the end of [14] one can find a correcture. Picard mentioned
that he has forgotten in [13] two elements for getting system of (projective)
generators.

4. Projective monodromy. The aim of our next steps is to prove
that the right column of (3.21) coincides with the middle column. Then the
embeddings of the first row have to be equalities. We need two difficult results,
the first one due to Mostow-Deligne, the second one comes from fine surface
classification due to the author. For a clear understandingof Mostow-Deligne’s
result we must distinguish between monodromy and projective monodromy. We
must change to projective unitary representations. The commutative diagram
(3.18) goes down to arithmetic groups

(4.1)
Z −→−→ PMonZ ∼= π1(P

∗
2/S4) →֒ PΓ

(S4) ↑ ↑ ↑ (S4)
Zcol −→−→ PMonZcol

∼= π1(P
∗
2) →֒ PΓ(

√
−3),

with vertical embeddings.

Theorem 4.2 ([7]). The quotient surface P∗
2/S4 is the moduli space of

smooth Picard curves.

This means that the correspondence Ct 7→ Pq(t), t ∈ T ∗
0 , q : T ∗

0 → P∗
2 →

P∗
2/S4 defines a bijection between the isomorphism classes of Picard curves and

P∗
2/S4.

Let us recapitulate our kinds of representations. Fix a Picard curve
C = Ct, t ∈ T ∗. Let us call the natural representation of Z in H1(Ct, Z) the
Z-representations of Z at t. With a fixed Z-basis one gets a group homomor-
phism Z → IGl6(Z). Taking the O-structure of H1(Ct, Z) in our consideration
one gets an O3-representation. For a fixed O-Basis α it corresponds to a group
homomorphism Z → IGl3(O). Applying

∫
~ω with fixed basis ~ω of H0(C,ωC) to

the cycles the representation changes to a dual C3-representation. Now choose ~ω
as eigenbasis of H0(C,ωC) and ∗α a Picard basis of H1(C,ωC). We will take

ω1 = dx/y, ω2 = dx/y2, ω3 = xdx/y2
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simultaneously for all t ∈ T ∗. Remember to V = (C3, 〈, 〉) and the Picard pe-
riod matrix Π(∗α, ~ω), see Lemma 2.4. Looking at the first row we get a V -
representation of Z, more precisely, via Z-action on Picard bases, a group homo-
morphism Z → Γ = U((2, 1), O), which goes down to a projective representation

Z → π1(P
∗
2/S4) → PΓ = PU((2, 1), O).

For a fixed t0 ∈ T ∗
0 the Picard cycle ∗α0 = ∗α(t0), t0 ∈ T ∗ fixes a ball point

b0 = bα(t0) =



∫

α1

~ω :

∫

α2

~ω :

∫

α3

~ω


 ∈ B = PV−.

The action of Z via Γ yields a suborbit

MonZb0 ⊆ Γb0 = (PΓ)b0 ⊆ B

of the Γ-orbit Γb0 of b0 in B. The same is true for Zcol, Monπ1(P
∗
2) and Γ(

√
−3),

that means we get a suborbit

MonZcolb0 ⊆ Γ(
√
−3)b0 ⊂ B.

If we move t in T ∗ and the Picard cycle α(t) contineously starting from t0 and
Picard cycle α0, say, then we move the suborbits. On a simply-connected open
analytic neighbourhood U ′ of t0 we get unique suborbits MonZb(t) ⊂ B, t ∈ U ′.
Since the action is projective, it factors through π(P∗

2) by Lemma 3.15. On
this way we found the link with the paper [12] of Mostow–Deligne. There the
monodromy groups are understood only as projective ones. Shifting braid groups
to the background we introduce (and justified) the following notation:

Monπ1(P
∗
2) := (P )MonZcol.

Theorem 4.3 (Mostow-Deligne [12]).

1. Monπ1(P
∗
2) is a lattice in PU((2, 1), D).

2. For a suitable simply-connected open analytic subset U of P∗
2 the orbits

Monπ1(P
∗
2)b(t), t ∈ U , fill an open fundamental domain of B with respect to

Γ(
√
−3).
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With regard to Proposition 3.17 the first statement means that

4.4. Monπ1(P
∗
2) is a subgroup of finite index in PΓ(

√
−3).

Theorem 4.5 ([7]). The Baily-Borel compactification ̂
B/Γ(

√
−3) of

B/Γ(
√
−3) is the projective plane P2. The locally finite analytic quotient map

B → B/Γ(
√
−3) is branched along ∆∩ (B/Γ(

√
−3)). The preimage of the branch

locus is ΓD for D a subdise of B (e.g. z1 = 0, if z1, z2 are the coordinates defining

B by |z1|2 + |z2|2 < 1). The cusp point set ̂
B/Γ(

√
−3) \ B/Γ(

√
−3) consists

precisely of the triple points of ∆.

We checked moreover in [7] that the cusp subgroups of Monπ1(P
∗
2) are

maximal such that they have to coincide with those of PΓ(
√
−3). It follows

that the corresponding finite covering of compactified ball quotient surfaces is
unramified around the cusp points. Therefore this covering cannot be ramified
along ∆, hence it is unramified at all by Theorem 4.5. Since π1(P

2) = 1, the only
unramified covering of the complex projective plane is P2 itself. It follows that
both ball quotient surfaces above coincide. On this way we proved the following

Corollary 4.6 ([7]).

Monπ1(P
∗
2) = PΓ(

√
−3).

Looking back to diagrams (3.18), (4.1) and to Lemma 3.15 we get

Corollary 4.7.

PMonZcol = π1(P
∗
2) = PΓ(

√
−3)

and
MonZcol = Γ(

√
−3).

The factor group π1(P
∗
2/S4)/π1(P

∗
2) is S4. The middle part of diagram

(4.1) translates this isomorphy to

PMonZ/PMonZcol
∼= S4, hence MonZcol

∼= Γ(
√
−3),

see diagram (3.18). From the corollary and diagram (3.18) it follows that also

Γ/MonZcol = Γ/Γ(
√
−3) ∼= S4

∼= MonZ/MonZcol.
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Since MonZ ⊆ Γ it follows that Γ = MonZ, hence all inclusions in the first row of
diagram (3.18) are equalities. Altogether we get what we want to prove:

Theorem 4.8. With the above notations it holds that

MonZ = Sp(6, Z)Pic = Sp(6, Z)α = Γ = U((2, 1), O).

Corollary 4.9. The monodromy group MonZ = U((2, 1), O) acts simply-
transitive on the set of Picard bases of each smooth 3-sheeted Galois cover C of
P1 of genus 3.

P r o o f. The group IGl3(O) acts simply transitive on the set of O-bases of
H1(C, Z) ∼= O3. Therefore the action of Γ ⊂ IGl3(O) must be simple.

It remains to prove that the action is transitive. Let ∗α, ∗β be two Picard
bases on C. Since both are normal bases they are Sp(6, Z)-equivalent. Moreover,
by definition of Sp(6, Z)Pic they are equivalent with respect to the latter group.
By the theorem the O-bases α, β are Γ-equivalent. �

5. Moduli interpretations. There are two well-known moduli inter-
pretations 5.1 and 5.2.

Theorem 5.1 ([7]). The ball quotient surface B̂/Γ is the (compactified)
moduli space of Picard curves.

By Theorem 4.2 this moduli space is isomorphic to P2/S4, and Theorem

4.5 teaches us that P2/S4
∼= ̂

B/Γ(
√
−3)/S4 = B̂/Γ. �

Theorem 5.2. (Shimura [17], see also [4] for a more actual version).

B̂/Γ is the (compactified) moduli space of (principally) polarized abelian 3-folds
with K-multiplication of signature (2, 1).

By definition, an abelian variety A has K-multiplication, if there is an
embedding of K into the endomorphism algebra EndQA = Q⊗End A. Signature
(2, 1) means that the corresponding K-action on T0A (tangent space at 0) can
be diagonalized such that the restricted action on the diagonalizing lines appears
twice as identical character of K∗ and once as its conjugation. For more details
about compatibility of polarization and K-multiplication according to the general
concept of complex Shimura-varieties we refer to [17] or [4].
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Theorem 5.1 extends now to the

Theorem 5.3. The ball quotient surface B̂/Γ is the compactified moduli
surface of all curves of genus 3 which are 3-sheeted Galois covers of P1.

We have a Shimura diagram (in [8] we called it Schottly-Torelli diagram)

(5.4)
B →֒ H3

↓ ↓
B/Γ −→ A3

extending

(5.4)∗
B∗ →֒ H∗

3

↓ ↓
(P2 \ ∆)/S4 = B∗/Γ →֒ A∗

3

where B∗ denotes the preimage of P2\∆ along the quotient map B → B/Γ(
√
−3) =

P2 \{ 4 points}, and H∗
3 is the preimage of A∗

3 ⊂ A3 along the quotient morphism
H3 → H3/Sp(6, Z) = A3 (look at the end of section 1). The points of A∗

3

correspond to Jacobians of smooth curves of genus 3, and the points of B∗/Γ
correspond to smooth Picard curves.

By Torelli’s theorem the correspondence of smooth Picard curves to their
Jacobians defines the embedding B∗/Γ →֒ A∗

3, which is algebraic because of a
theorem of Chow: Namely, after compactification and a suitable singularity reso-
lution B̃/Γ of B̂/Γ, not changing B∗/Γ, one gets an analytic morphism B̃/Γ → Â3

which has to be algebraic by Chow. Furthermore, B∗/Γ is obviously a Zariski-

open subset of B̃/Γ.

The lower arrow in diagram (5.4) represents a rational morphism extend-
ing the corresponding embedding of (5.4)∗. Namely, the quotient map on the
left side of (5.4) comes from the restriction of the Sp(6, Z)-action on H3 to the
Γ = Sp(6, Z)Pic-action on B.

Theorem 5.3 has to be understood in the following sense:

Proposition 5.5. (i) The period matrices of all smooth 3-sheeted Galois
covers of P1 of genus 3 correspond precisely to the points of B∗.
(ii) The moduli points of the same curves fill precisely (P2 \ ∆)/S4 = B∗/Γ.
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P r o o f. By Proposition 2.5 the image points of the period matrices (with
respect to the bijective correspondence (2.6)) belong to B ⊂ H3. If B# denotes
the image, then we know that

B∗ ⊆ B# ⊆ B ⊂ H3

because the period matrices of smooth Picard curves fill B∗. Namely, the moduli
points of smooth Picard curves fill precisely (P2 \ ∆)/S4, and the Picard period
matrices of one of these curves C fill precisely an orbit Γb = Sp(6, Z)Picb, b ∈ B

suitable. Since each smooth Picard curve Y 3 = P4(X) belongs to the curve class
of Proposition 5.5 we get B∗ ⊆ B#.

Now it suffices to check that the set M# of moduli points of our curve
class is a subset of (P2 \ ∆)/S4. This means that each smooth 3-sheeted Galois
cover C of P1 of genus 3 is isomorphic to a smooth Picard curve. This is easy to
see: Let C(C) be the function field of C, C(P1) = C(X). By Kummer theory the
cyclic field extension C(C)/C(X) is generated by a third root of an element of
C(X), say

C(C) = C(X)(y), y3 =
f(X)

g(X)
, f(X), g(X) ∈ C[X].

Multiplying by g3(X) and changing y by yg(X) it is justified to assume that
g(X) = 1, that means

y3 = f(X), f(X) ∈ C[X].

In [10] it is proved that one can choose more precisely

(5.6) y3 = (X − a1)(X − a2)(X − a3)(X − a4)(X − a5)
2 =: f(X)

as affine equation for a model of C. As described in [15, I, §3.1], one finds a
Picard equation by means of a birational transformation in the following manner:

multiply (5.6) by (X − a5)
−6, substitute

y

(X − a5)2
by U and (X − a5)

−1 by V .

Then
f(X)

(X − a5)4
=

F (X − a5)

(X − a5)4
is a polynomial p4(V ) of degree 4 and U3 = p4(V )

is the equation we look for. �

As corollary we get the following result of Schottky-type

Proposition 5.7. A matrix Π = (Π1|Π2) ∈ Mat3×6(C) is the period
matrix of a smooth 3-sheeted Galois cover of P1 of genue 3 if and only if it is
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IGl3(C)-equivalent (by left multiplication) to a Picard matrix Π′ (defined in 2.6)
such that the image of Π′ along the bijection (2.3) belongs to B∗.

Remark 5.8. In [10] the authors prove that smooth genus 3 curves with
automorphism group Z/3Z or Z/6Z are precisely those which have a smooth
Picard curve model. So these isomorphy classes are precisely represented by
P∗

2/S4. The moduli points of these curves with automorphism group Z/6Z

correspond precisely to the S4-orbit of the three lines on P2 going to pairs of
the three double points of ∆. The corresponding Picard curves are of equation
type Y 3 = X4 + aX2 + b, see [10].

Remark 5.9. The curves represented by P∗
2/S4 are not hyperelliptic.

This is clear for the curves with automorphism group Z/3Z because hyperel-
liptic curves have an automorphism of order 2. For the smooth curves C of
equation type Y 3 = X4 + aX2 + b the automorphism group is generated by
(x, y) 7→ (−x, ̺y). The quotient of C by the subgroup of order 2 is obviously an
elliptic curve E : y3 = U2 + aU + b. Therefore C cannot be a 2-sheeted covering
of P1. In [7] we proved that the Picard curves corresponding to smooth points of
∆ are singular models of a smooth hyperelliptic curve of genus 2.
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