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Abstract

We define Picard-Einstein metrics on complex algebraic surfaces as Kähler-Einstein metrics with
negative constant sectional curvature pushed down from the unit ball via Picard modular groups
allowing degenerations along cycles. We demonstrate how the tool of orbital heights, especially
the Proportionality Theorem presented in [H98], works for detecting such orbital cycles on the
projective plane. The simplest cycle we found on this way is supported by a quadric and three
tangent lines (Apollonius configuration). We give a complete proof for the fact that it belongs to
the congruence subgroup of level 1 + i of the full Picard modular group of Gauß numbers together
with precise octahedral- symmetric interpretation as moduli space of an explicit Shimura family of
curves of genus 3. Proofs are based only on the Proportionality Theorem and classification results
for hermitian lattices and algebraic surfaces.
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1 Introduction

The main purpose of this article is to show that the world of complex algebraic surfaces is Picard-Einstein
with a universal degeneration lifted finitely from a quadric and three tangents on the complex projective
plane. The three tangent points are ”points at infinity” (cusp points) from the non-euclidean metric
viewpoint. I found this projective complexified Apollonius configuration in connection with Fuchsian
systems of partial differential equations in Sakurai-Yoshida [S-Y] (”mysterious phenomenon”, p. 1490;
Figure 2, p. 1492). One calls a hermitian metric on a smooth complex surface X̊ Picard-Einstein (in
a wide sense), if it is Kähler-Einstein with negative constant sectional curvature. If, moreover, X̊ is
a Zariski open part of an algebraic surface X, then one says that X is Picard-Einstein (with Picard-
Einstein metric) degenerating (at most) along X \ X̊. The Bergman metric on the two-dimensional
complex unit ball B is Picard-Einstein, see [BHH], Appendix B, for a short approach. For a ball lattice
Γ ⊂ Authol B the (quasiprojective) quotient surface X = XΓ = B/Γ (also any compactification X̂ of X) is
Picard-Einstein degenerating along the branch locus of the canonical quotient map p = pΓ : B −→ B/Γ
(and along the compactification cycle). The Picard-Einstein property lifts to each finite cover Ŷ of
X̂ degenerating (at most) along the preimages of branch loci of pΓ and Ŷ −→ X̂. We call Ŷ Picard-
Einstein, if it is finitely lifted (that means via finite covering) from a ball quotient surface B/Γ such
that the Baily-Borel compactification B̂/Γ of B/Γ is the complex projective plane P2. If one finds a ball
lattice with this property, then each complex projective surface is Picard-Einstein in the narrow sense
because each such surface is a finite covering of P2, e.g. via general projections.

The first proof for the fact that P2 is Picard-Einstein (degenerating along six lines) can be found
in [H86]. There we used the Picard modular group of Eisenstein numbers. The main result of
this paper is to show that P2 is Picard-Einstein degenerating along the Apollonius configuration de-
scribed above, see theorem 5.1. The corresponding group Γ(1 + i) is the congruence sublattice of
Γ := SU(diag(1, 1,−1), O), O = Z + Zi, i =

√−1, belonging to the ideal O(1 + i). This is a Picard
modular group of Gauß numbers.

There are some papers which came already near to this result. First I have to mention Matsumoto’s
article [Mat]. There is proved that P1 × P1 is the compactified ball quotient surface by a subgroup of
Γ(1 + i) of index 2 but with Γ = SU(

(
0 −i 0
i 0 0
0 0 1

)
, O). His proof is based on Mostow-Deligne’s theorem

[D-M] conversing multivalued solutions (hypergeometric functions) of a special Picard-Fuchs system by
a (in [D-M] explicitly unknown) monodromy group acting on the ball. In the recent monograph of
Yoshida [Y97] it appears in terms of admissible sequences, see Ch. VI, Table 1, case d = 4, 2+2+2+2
(∞,∞,∞).

Already in [Ho83] we classified precisely the surface B̂/Γ. The proof is reproduced in [H98], addition-
ally with explicit description of the branch locus of pΓ. The ramification locus (on B) has been found
before by Shvartsman [Sv1], [Sv2] via classification of some hermitian O-lattices. He calculated the
Euler number of B̂/Γ. The rationality of this surface has been proved before by Shimura [Sm64] after
his celebrated general interpretations of arithmetic quotient varieties in [Sm63], which are called now
”Shimura varieties”. Since Shvartsmann’s classification of Γ-elliptic points is not avalaible in publica-
tions, we fill that gap in sections 6, 7 classifying precisely the indefinite unimodular rank−2 sublattices
of the Gauß lattice Λ = O3 endowed with our diagonal hermitian metric of signature (2, 1). Very useful
is Hashimoto’s paper [Has] for this purpose.

The most natural way for finding a configuration (reduced cycle Z) on an orbiface (two-dimensional
orbifold), which could be the degenerate locus of a Picard-Einstein metrics has been described in [H98].
Beside of quotient singularities we allow also cusp singularities on the surface. The irreducible com-
ponents of the configuration (points and irreducible curves) are endowed with natural numbers or ∞
(weights) in an admissible manner. Then one gets an orbital cycle. The surface X together with the
orbital cycle Z is called an orbital surface. The orbital surface germs around points are irreducible
components of the orbital cycle are called orbital points or orbital curves, respectively. Points or curves
with weight ∞ are called cusp points or cusp curves, respectively. They form a subcycle Z∞ of Z whose
support is denoted by X∞. The finitely weighted points are quotient points. For details we refer to
[H98], where we corresponded rational numbers to our orbital objects called orbital hights. The orbital
surface hights (global hights H) generalize volumes of Γ- fundamental domains on B of arbitrary ball
lattices Γ. The orbital curve hights (local hights h) do the same for the complex unit disc D and D-lattice
groups. Euler form and signature form define on this way two different orbital hights He, Hτ and he, hτ

called Euler or signature hights, respectively. A finite uniformization Y −→ X of an orbital surface
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X = (X,Z) is a finite Galois covering Y −→ X such that Y is smooth (outside cusp points) and the
weights of the components of Z coincide with corresponding ramification indices. A ball uniformization
of X is a (locally finite) infinite Galois covering (quotient map by a ball lattice) B −→ Xf := X \X∞
again with wights equal to corresponding ramification indices. We announce the following

Theorem 1.1 For an orbital surface X = (X,Z) the following conditions are equivalent:

(i) X has a ball uniformization

(ii) The proportionality conditions

(Prop 2) He(X) = 3Hτ (X) > 0

(Prop 1) he(C) = 2hτ (C) < 0 for all orbital curves C ⊂ Z

are satisfied, and there exists a finite uniformization Y of X, which is of general type.

The direction (i) ⇒ (ii) has been proved in [H98], see Proportionality Theorem IV.9.2. Notice that our
hτ is 3 times hτ of [H98]. The other direction follows from the degree homogenity of the global heights
and a well-known theorem of R.Kobayashi-Miyaoka-Yau applied to Y . Namely, it is easy to see that
the (Prop 2)-condition lifts to the logarithmic Chern number condition c̄2

1 = 3c̄2 for Y .

¤

In section 3 we use the explicit orbital hight machine for detecting suitable wights for points and
curves on the Apollonius configuration on P2 such that the corresponding orbital surface satisfies the
proportionality conditions. This has been done for demonstrating and understanding a general ap-
proach to detect Picard-Einstein metrics on surfaces. Any orbital configuration (X, Z) defines a system
Dioph(X, Z) of diophantine equations. It comes out from a system of a quadratic and some linear
equations with rational coefficients closely related with (Prop 2) or (Prop 1), respectively, for which
we have to determine inverse of natural numbers as solutions (the inverse of the weights we look for).
There are at most finitely many solutions, see [H98], IV.10.

In the next section we transform the detected weights to seven properties (i),...,(vii) of a uniformizing
ball lattice Γ′ we look for using the Proportionality Theorem via the system Dioph(X, Z) again, this
time in converse direction: We know the weights but the data (Chern numbers, selfintersections) of
X, Z are unknown. With the eight postulated properties we are able to determine these data and to
classify surface and curves to get B̂/Γ′ = P2 and the Apollonius configuration back. In the sections 5,6,7
we prove that the congruence lattice Γ(1 + i) has all the eight properties.

In section 5 we prove that the structure of the factor group Γ/Γ(2) is isomorphic to the binary
octahedron group 2O. An essential point is to decide which of two possible unitary codes in F8

2 is
defined by the intermediate factor group Γ(1 + i)/Γ(2). This is done by a non-elementary tool of
algebraic topology (Armstrong’s Theorem, see Theorem 8.2). Its application is well-prepared by the
sections before. Knowing the code we find an intermediate ball lattice Γ(2) ⊂ Γ2 ⊂ Γ(1+i) with quotient
surface P1×P1 and factor group Γ2/Γ isomorphic to the binary dieder group 2S3 of order 12. Together
with the appendix we prove that P1 × P1 is the moduli space of the obviously 2S3-symmetric family of
(double distinguished) curves Cb : Y 3 = (X − 1)(X + 1)(X − b1)2(X − b2)2(X − b3)2. The projective
plane appears as moduli space of the (distinguished) curves via the map Cb 7→ Pb = (b1 : b2 : b3).

In order to connect the family with octahedral-symmetric Picard modular forms it is important
to know the surface B̂/Γ(2) because van Geemen [vGm] found a structure result for the ring of Γ(2)-
modular forms in terms of theta constants and left open the problem of precise surface classification. For
theta constants of Matsusaka’s Γ′2-level we refer also to [Mat]. Until now we know and announce that
B̂/Γ(2) is a smooth rational surface with six cusp points. The curve part of the corresponding orbital
cycle contains precisely ten smooth rational curves of wight 2 and selfintersection −1 on the blowing up
model of the six cusp points. Nearby should be also congruence subgroups whose quotient surfaces are
models of E×E, E elliptic curve with complex Q(i)-multiplication or of the Kummer surface E×E/〈ι〉,
ι the involution sending P to −P on the abelian surface E×E. Both surfaces together with ball quotient
presentations are important. The first one should recognize Hirzebruch’s abelian covers of E×E defined
in [Hir] as Picard modular surfaces as it was done for Eisenstein numbers in [Ho86]. The second one
could join Hilbert’s 12-th problem for our special Shimura surface(s) with the 3-dimensional congruent
number problem, see Narumiya-Shiga [N-S].
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Next we turn our attention to a conjecture of Kobayashi [Kob] about complements of hypersurfaces
in Pn to be (Kobayashi-) hyperbolic, if the degree of the sum of hypersurfaces is high enough. We refer
to Dethloff- Schumacher-Wong [DSM] and the references given there for more details, restrict ourselves
to n = 2 and ask for curve configurations Z on P2 such that P2 \supp(Z) is Picard-Einstein degenerated
precisely along Z. This is a much stronger problem. For the complements of three quadrics or of a
quadric and three lines the hyperbolicity is proved in general, but not individual. The orbital hight
machine should be used to present more Picard-Einstein models. Is degree 5, as for the Apollonius
configuration, the minimal possible degree ? In the mean time N.Vladov writes a detecting algorithm
on MAPLE producing first experimental results: The declaration of all the three tangent points as cusp
points leads only to our series of wights of cycle components such that the corresponding orbital surface
satisfies the proportionality conditions. But there are also weight solutions for the cases that only 2, 1 or
no of these three points are declared to be of cusp type (the other of quotient type), see Theorem 11.1.
It seems to be quite possible that a good part of the 27 cases of the PDM (Picard-Deligne-Mostow) list
of wighted lines on P1×P1 or P2, see e.g. [BHH], p. 201, can be lifted from the Apollonius configuration.

We finish the introduction with the following problem: Consider the class F of all smooth compact
complex algebraic surfaces finitely covering P2 with branch locus on the Appolonius configuration. Finite
curve coverings of P1 branched over three points only are characterized as curves defined over number
fields by a famous Theorem of Belyi [Bel] (for proof see also [Se89]). Find a similar characterization
for the class F of surfaces ! Belyi’s curves are also characterized as compactified quotients curves by
subgroups of Sl2(Z) acting on the upper half plane H, see Shabat, Voevodsky [S-V], also [Se89], app. of
5.4. Which of the surfaces of F are ball quotients by (a group commensurable with) a Picard modular
group of Gauß numbers ?

2 The basic orbital surface: Plane with Apollonius cycle

We consider an orbital surface

(1) X̂ = (X̂; Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3)

with smooth compact complex algebraic surface X̂ supporting the orbital cycle

(2) Z(X̂) = Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3,

which consists of four orbital curves Ĉj , j = 0, 1, 2, 3, on X̂ with weight 4, three (finite) orbital abelian
points Pj , j = 1, 2, 3, of type C2/Z4×Z4 where Z4×Z4 ⊂ Gl2(C) denotes the abelian group generated
by 2 opposite reflections of order 4, and K1,K2,K3 are precisely the orbital points at infinity. For the
surface X̂ and the reduced cycle

(3) Z(X̂) = Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3

we claim the following conditions:

(i) The surface X̂ is the projective plane P2

(ii) a) Ĉ0 is a quadric on P2;

b) Ĉ1, Ĉ2, Ĉ3 are projective lines on P2;

c) P1, P2, P3 are the three different intersection points of these lines;

d) Ĉj is the tangent line of Ĉ0 at Kj , j = 1, 2, 3;

e) The configuration divisor Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 is symmetric. This means that there is an
effective action of the symmetric group S3 on P2 preserving Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3.

Definition 2.1 If these conditions are satisfied we call Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 a plane Apollonius configu-
ration or Apollonius configuration on P2, the cyle Z(X̂) a reduced plane Apollonius cycle and each
effective cycle with this support a plane Apollonius cycle.
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The properties a),b),c),d) mean that the Apollonius configuration on P2 consists of a plane quadric and
three different tangent lines of it. We will see below that e) is automatically satisfied with a unique S3-
action. The following graphic describes the corresponding configuration together with three additional
lines Lj joining Pj and Kj . For the rest of this section we work on X̂ = P2 and omit the hats over Cj .
Moreover, we assume that all quadrics are non-degenerate, if the opposite is not stated.
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Figure 1.

Remark 2.2 The three quadruples {Pj ,K1,K2,K3}, j = 1, 2, 3, are in general position. This means
that each subtriple spans P2. Namely, the different points K1,K2,K3 cannot ly on one line L because
(L · C0) = 2. For the same reason, for example, the (tangent) line through P1, K2 cannot contain K1

or K3. By symmetry the argument is complete.

Especially, we can choose the S3-symmetric

Normalized Model 2.3

C0 : (X + Y − Z)2 − 4XY = X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = 0;

C1 : X = 0 C2 : Y = 0 C3 : Z = 0 ,
P1 = (1 : 0 : 0) P2 = (0 : 1 : 0) P3 = (0 : 0 : 1) ;
K1 = (0 : 1 : 1) K2 = (1 : 0 : 1) K3 = (1 : 1 : 0) ;

L1 : Y = Z L2 : X = Z L3 : X = Y .

For finding the (unique) quadratic equation we refer to the end of this section (Lemma 2.10).

Proposition 2.4 Up to PGl3-equivalence the Apollonius configuration is unique-ly determined. All
Apollonius configurations are S3-symmetric.

Proof. Let D0 ⊂ P2 be another quadric and D1, D2, D3 three tangents touching D0 in M1,M2,M3,
respectively. The intersection point of Di, Dj is denoted by Qk for {i, j, k} = {1, 2, 3}. Let π be the
correspondence P1 7→ Q1, Kj 7→ Mj , j = 1, 2, 3. By the main theorem of (elementary) projective ge-
ometry, this map extends uniquely to a projective transformation Π : P2 −→ P2, because the points
P1,K1,K2,K3 (and their images) are in general position by the above remark. Π sends the C0-tangents
C2, C3 (through P1 and K2, K3, respectively) to the D0-tangents D2, D3. A quadric is uniquely de-
termined by two given tangent lines and a point on it different from the touching points of the two
tangents. Namely, the algebraic family of all plane quadrics is 5-dimensional. Going through three
given points and two given tangent lines at two of them yield five linear conditions for the five (affine)
parameters for the quadrics. Via projective transformation this can be also checked now more explicitly
by example: Take D2 = X-axis, D3 = Y -axis in C2 ⊂ P2 , P1 = (0, 0), K2 = (1, 0), K3 = (0, 1). It is
an easy calculation to see that the only quadric with tangents D2, D3 at K2 or K3, respectively, going
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through K1 := (2, 1) is the circle (X − 1)2 + (Y − 1)2 = 1 with center (1, 1). Turning back to the
general situation we see that Π sends the quadric C0 to the quadric D0. But then the tangent line C1

at K1 ∈ C0 is sent to the tangent D1 at M1 ∈ D0.
If a configuration is symmetric, then each projective transform of it is, by conjugation of the S3-

action. Since 2.3 is the symmetric we are through.

¤

Corollary 2.5 The action of the symmetric group S3 on P2 preserving the configuration C0 + C1 +
C2 + C3 is unique. It is determined by extending permutations of points π : Ki 7→ Kπ(i), Pi 7→ Pπ(i),
i = 1, 2, 3, π ∈ S3, to Π ∈ AutP2 = PGl3(C). Especially for the normalized model 2.3 the group S3 acts
by permutation of canonical projective coordinates (x : y : z) on P2.

Proof. The general statement is a special case considered in the proof of Proposition 2.4 setting D0 = C0

and taking for D1, D2, D3 an arbitrary permutation of C1, C2, C3. For the normalized model the action
is obvious.

¤

Remark 2.6 The lines L1, L2, L3 defined in (1.4) have a common point.

Proof. This can be checked now on any special model. The normalized model 2.3 yields (1 : 1 : 1) as
intersection point of the three lines.

¤

Lemma 2.7 Each projective representation G ⊂ AutP2 of a finite group can be lifted to a linear
representation G̃ ⊂ Gl3(C). For given d ∈ N+ there is a unique central lift (group extension) G̃d ⊂
Gl3(C) of G with the group Z3d ⊂ C* of 3d-th unit roots as (central) kernel. It consists of all lifts of
elements of G with determinant in Zd.
Each finite lift G̃ ⊂ Gl3(C) of G is a subgroup of G̃3d for a suitable d ∈ N+. The special lift G̃1 ⊂ Sl3(C)
has kernel Z3 over G.

Proof. For each g ∈ G we can find a lift g̃ ∈ Gl3(C) because of the exact sequence

1 −→ C* −→ Gl3(C) −→ PGl3(C) −→ 1

of group homomorphism. The coset C*g̃ consists of all lifts of g. We can choose a special lift g̃ with
determinant in Zd. Then the subset Z3dg̃ coincides with the set of all lifts of g with determinant in Zd.
By such choice g̃ for each g ∈ G we obtain the group G̃d := {Z3dg̃; g ∈ G} ⊂ Gl3(C) together with exact
sequences

1 −→ Z3d −→ G̃d −→ G −→ 1

det

1 −→ SG̃d −→ G̃d −→ Zd −→ 1

with central kernels. Now it is clear that each finite representative lift of G to Gl3(C) is contained in
one of the G̃d because the corresponding determinant group must be finite.

Write both exact sequences together in one diagram and complete it to a diagram with three exact
rows and three exact columns. Then one gets an exact sequence

1 −→ Z3 −→ SG̃d −→ G −→ 1.

Obviously, SG̃d does not depend on d. It coincides with G̃1. So the last sequence is nothing else but

(4) 1 −→ Z3 −→ G̃1 −→ G −→ 1.

¤

6



Denote for an arbitrary group H by CF (H) the set of conjugation classes of finite subgroups of H.
Obviously we get for all n ∈ N+ by C*- factorization a surjective map

(5) CF (Gln(C)) ³ CF (PGln(C)).

Let CFd(Gl3(C)) be the subset of CF (Gl3(C)) consisting of all complete lifts G̃d with determinant d of
finite subgroups G of PGl3(C). For n = 3 we get a bijective restriction of (5) to

(6) CFd(Gl3(C)) ←→ CF (PGl3(C)).

For d = 1 one gets especially a bijection

(7) CF (Sl3(C)) = CF1(Gl3(C)) ←→ CF (PGl3(C)).

Let P ⊂ Gl3(C) be the subgroup of permutation matrices. We multiply the elements of P by their
determinants to get a subgroup P1 of Sl3(Z) isomorphic to S3. We call it the group of unimodular
permutation matrices.

Corollary 2.8 Let G ⊂ PGl3(C) be a finite group isomorphic to S3. Then G can be lifted uniquely to
a subgroup of Sl3(C) conjugated to the group P1 of unimodular permutation matrices. There exists a
projective coordinate system on P2 such that G acts by permutation of coordinates.

Proof. The second statement follows from the first because projective conjugations correspond to
projective coordinate changes, and P1 acts obviously by permutation of canonical coordinates. Take
the lift G̃1 ⊂ Sl3(C). It splits into Z3 × Σ3 by (6) and Σ3 projects isomorphically to G ∼= S3. Since
Σ3 is not abelian, the representation Σ3 ⊂ Gl3(C) is not diagonizable that means it doesn’t split
into three characters. The only irreducible representations of S3 are the characters 1, sgn (signature
of permutations) and the faithful rank-2- representation δ realized as the dieder group of a regular
triangle. Therefore there are, up to conjugation, only two faithful rank-3 representation, namely 1 + δ
and δ + sgn, where only the latter has determinant +1. Therefore it is equivalent to the representation
P1 ⊂ Sl3(C). This means that the groups Σ3 and P1 are Gl3(C)-conjugated, hence Sl3(C)-conjugated.
Since each Sl3-lift of G must be contained in G̃1 (via Lemma 2.7) we see that Σ3 is the only possibility
of isomorphic lifting.

¤

Remark 2.9 Let O be an integral subdomain of the field C not containing primitive 3-rd unit roots. A
finite group G ⊂ PGl3(C) has at most one unimodular lift G̃ ⊂ Sl3(O). If it exists, it must be isomorphic
to G. Especially, S3 has the unique representation P1 ⊂ Sl3(O).

Proof. The first statement is true because

Z3 =
{(

ω 0 0
0 ω 0
0 0 ω

)
; ω a 3− rd unit root

}

intersects Sl3(O) trivially and because of the exact sequence (6). For the second one has only to lift
the representation of S3 permuting canonical coordinates and to apply the uniqueness statement of
Corollary 2.8. ¤

Lemma 2.10 For three projective lines C1, C2, C3 on P2 intersecting each other in different points and
for a given subgroup Σ3

∼= S3 of PGl3 permuting them there is precisely one quadric C0 with tangents
C1, C2, C3. For the canonical coordinate axes X = 0, Y = 0, Z = 0 of P2 the corresponding quadric (see
2.3, normalized model) has equation

X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = (X + Y − Z)2 − 4XY = 0.

Proof. Assume that we find an Apollonius configuration C0 + C1 + C2 + C3 extending the given lines.
Because of PGl3-equivalence of such configurations (Proposition 2.4) we can assume that these lines are
the coordinate axis

C1 : X = 0 , C2 : Y = 0 , C3 : Z = 0

7



with intersection points

P1 = (1 : 0 : 0) , P2 = (0 : 1 : 0) , P3 = (0 : 0 : 1).

Moreover, the action of S3 on P2 can assumed to be the most natural one permuting coordinates
(Corollary 2.5) with unique lift S3 ⊂ Sl3(C) represented by permutation matrices (Corollary 2.8). Let

aX2 + bY 2 + cZ2 + 2dXY + 2eXZ + 2fY Z = 0.

be the homogeneous equation of an arbitrary plane quadric. All S3-invariant quadrics must satisfy
simultaneously three equations

aY 2 + bX2 + cZ2 + 2dXY + 2eY Z + 2fXZ = 0
aZ2 + bY 2 + cX2 + 2dY Z + 2eXZ + 2fXY = 0
aX2 + bZ2 + cY 2 + 2dXZ + 2eXY + 2fY Z = 0,

which have to be the same up to a factor. It follows that a = b = c = 1 (without loss of generality) and
d = e = f . Therefore the S3-invariant quadrics form a 1-parameter family

X2 + Y 2 + Z2 + 2dXY + 2dXZ + 2dY Z = 0.

The curve C0 has contact of order 2 with C1 : X = 0 at a point K1 = (0 : 1 : t). Substituting the
coordinates of K1 in the quadratic equation, this means that the equation

0 = 1 + t2 + 2dt = (t + d)2 + (1− d2)

must have a unique solution for t. Therefore d = −t = 1 or d = −t = −1. By symmetry we conclude
that there are precisely two S3-invariant quadrics with tangent C1, namely

X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = (X + Y − Z)2 − 4XY = 0

and
X2 + Y 2 + Z2 + 2XY + 2XZ + 2Y Z = (X + Y + Z)2 = 0.

But the latter one is degenerated. ¤
For later use we need the more general

Definition 2.11 An Apollonius cycle on a smoooth compact complex algebraic surface Y is a cycle

(8) Z = v0L0 + v1L1 + v2L2 + v3L3 + P1 + P2 + P3 + K1 + K2 + K3,

where the vi’s are positive integers, P1, P2, P3,K1,K2, K3 are points on Y , and the Li’s are smooth
complete algebraic curves on Y with the following intersection behaviour:

L0 · Lj = 2Kj for j = 1, 2, 3; Li · Lj = Pk for {i, j, k} = {1, 2, 3}.
The supporting reduced curve L0+L1+L3+L3 is called an Apollonius configuration on Y. The Apollonius
cycle (configuration) is called symmetric, iff there is an algebraic S3-action on Y , which preserves the
cycle Z permuting effectively its components Ĉj, Pj, Kj, j = 1, 2, 3, respectively.

Remark 2.12 Obviously, v1 = v2 = v3 holds in the symmetric case. If Y is the projective plane, then
the Apollonius configuration is automatically of the (symmetric) plane Apollonius cycle consisting of a
quadric and three tangent lines as defined in 2.1 .

Namely, from (Lj · Lk) = 1 for 0 < j < k ≤ 3 and Bezout’s theorem it follows that the Lj ’s are smooth
curves of degree 1 on P2. Therefore L1, L2, L3 are projective lines. Since (L0 ·Lj) = 2 we conclude with
the same argument that L0 is a quadric touched by Lj at Kj . For symmetry we refer to Proposition
2.4.
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3 Proportionality

Turn back now to the more precise notations of 2.1 not assuming in this section the symmetry condition
(ii) e). We blow up each of the the points Kj twice such that the proper transforms of Ĉi for i =
1, 2, 3 on the resulting surface X̃ do not intersect the proper transform of Ĉ0. The exceptional divisor
E(X̃ −→ X̂) on X̃ consists of three connected components. Each of them is a pair of transversally
crossing smooth rational curves with selfintersection -1 or -2, respectively. Then we contract the three
-2-curves to get a surface X ′ with three quotient singularities of type C2/± ( 1 0

0 1 ) lying on exceptional
curves E1, E2, E3 ⊂ X ′. On this way we get an orbital birational morphism X′ −→ X̂ being isomorphic
outside X ′

∞ = E1 + E2 + E3 and X̂∞ = K1 + K2 + K3. The proper transforms of the Ĉj are denoted
by C ′j , j = 0, 1, 2, 3, respectively. On this way we get a complete orbital surface

X′ = (X ′;C′
0 + C′

1 + C′
2 + C′

3 + P1 + P2 + P3 + E1 + E2 + E3)

called the canonical locally abelian model of X̂. The finite part supported by X = X ′
f = X ′\X ′

∞ is the
open orbital surface

X = (X;C0 + C1 + C2 + C3 + P1 + P2 + P3)

with supporting non-compact curves Cj = C ′jf = C ′j\X ′
∞. The orbital cycle Z(X′) is described in the

following picture

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
··

··
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

TT

TT

........

........

........
........
.........
.........
.........
..........
..........

...........
.............

...............
......................

....................................................................................................................................................................................................................................................................................................................................................................................................................
.................

..............
............
...........
..........
.........
.........
.........
........
........
........
........
....

HHHHHHH

©©©©©©©

r r

rP1 P2

P3

C′0

C′1C′2

C′3

E1

S1

T1

R1
E2

E3

Figure 2. • singularity of type <2, 1>

The open orbital curves can be written as

C0 = 4C0,C1 = (4C1;P2 + P3),C2 = (4C2;P1 + P3),C3 = (4C3;P1 + P2)

The corresponding atomic graphs of the four orbital curves look like
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Figure 3.

and the molecular graph of the whole orbital cycle is
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In [H98], IV, Theorem 4.9.2, we proved that there are rather strong proportionality conditions for
an orbital surface to be an orbital ball quotient. For this purpose we defined orbital heights for orbital
curves and surfaces, which are rational numbers. First one has to draw the graph of an orbital curve Ĉ
on an arbitrary B−orbital surface X̂ (B−orbital means that only ball cusp singularities are allowed ”at
infinity”). On the open ”finite” part X of X̂ at most quotient singularities are admitted. We restrict
ourselves to abelian quotient singularities because in our example more complicated ones do not occur.
Moreover we assume that the orbital curves are smooth for the same reason. The (atomic) graph of Ĉ
= (vĈ;

∑
Pi +

∑
Kj) looks star-like:
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Figure 5.

The center represents the curve Ĉ weighted with v ∈ N+ and s is the selfintersection number (C ′2) on
the minimal singularity resolution X̃ −→ X ′ of the canonical locally abelian resolution X ′ −→ X̂, which
replaces each cusp point K by an irreducible curve EK (finite quotient of an elliptic curve) supporting
(at most 4) cyclic surface singularities.

The proper transform of Ĉ on X ′ or X̃ is denoted by C ′. The arrows to small circles represent cyclic
surface singularities Pi of type 〈di, ei〉 of X ′ lying on C ′ and the circle itself represents the curve germ

of weight vi crossing C ′ at Pi. The abelian point Pi :
〈di,ei〉◦−→◦
v vi

consist of the crossing curve germes of C,

Ci with weights v, vi, respectively. The small boxes represent cusp points lying on Ĉ, and the arrow to
the box represent the intersection point of EK and C ′ on X ′ being a cyclic singularity of type 〈dj , ej〉
isomorphic, by definition, to the singularity of C2/〈

(
ζ 0
0 ζe

)
〉, where ζ denotes a primitive d-th unit root.

The weight t at the box is the selfintersection of (the proper transform of) EK on X̃. We omit the arrow
orientation and 〈 , 〉, if 〈di, ei〉 or 〈dj , ej〉 = 〈1, 0〉. This means that the corresponding intersection point
is non-singular. The arrow orientation is also omitted, if the singularity of type 〈d, e〉 is symmetric. This
means that its minimal resolution (linear tree of smooth rational curve with selfintersection numbers
read off from the continued fraction of d

e ) is symmetric. Examples are given in figure 3. For more details
we refer to [H98]. There we defined (see IV, Definition 4.7.3 and restrict to our situation) the Euler
hight of C by

(9) he(C) = e(C ′)−
∑

(1− 1
vidi

)−#C ′∞,
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and the signature (or selfintersection) hight

(10) hτ (C) =
1
v
[(C ′2) +

∑ ei

di
+

∑ ej

dj
]

(which is 3τ f (Ĉ) in the notations of [H98]). The first sum runs over all abelian points Pi on C and the
second sum in (10) over all arrows 〈dj ,ej〉◦−→¦ joining the center with a cusp box, see picture 5. Looking at
the graphs 3 we can calculate

(11)
he(C0) = e(C ′0)− 3 = 2− 3 = −1

he(Ck) = e(C ′k)− (1− 1
4
)− (1− 1

4
)− 1 = −1

2
, k = 1, 2, 3

(12)
hτ (C0) =

1
4
[(C ′20 ) + 0 + 0] =

1
4
(−2) = −1

2
,

hτ (Ck) =
1
4
[(C ′2k ) + 0 + 0] =

1
4
(−1) = −1

4
, k = 1, 2, 3.

Until now we did not prove that the points K1,K2,K3 are allowed to be considered as cusp points.
For the corresponding orbital curves E = EK , K = Ki, i ∈ {1, 2, 3}, on X′ with formal (arbitrary) wight
w ∈ N+ we have the graph
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4 4

1
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Figure 6.

(Prop ∞)
he(E) = 2− (1− 1

4 )− (1− 1
4 )− (1− 1

2 ) = 0,
hτ (E) = 1

w [−1 + 0
4 + 0

4 + 1
2 ] = − 1

2w < 0.

This is a cusp curve condition (see below) and really the graph appears in the graphical classification
list of cusp points in [H98], III, Figure 3.5.3, type (2, 4, 4). So we can change to the cusp graph of K,
which looks like
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Figure 7.

Now we calculate the hights of X using Propsition 4.10.2 in [H98], chapter IV, as definition. The
local contributions appear in [H98], IV, Table 10.2, the global ones in (4.10.2), (4.10.3) there. Since the
open surface X is smooth and all quotient points on X are abelian the formulas for the Euler height and
the signature height simplify to

(13)
He(X) = e(X ′)−

∑
(1− 1

vi
)he(Ci)−

∑
he(Pk)

− 2#{rational cusp points of X̂}
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(14) Hτ (X) = τ(X ′)− 1
3

∑
(vi − 1

vi
)hτ (Ci)−

∑
hτ (Pk)−

∑
hτ (Km)

with
e(X ′) = Euler number of X ′

= e(X̃)−#{components of E(X̃ −→ X ′)} = e(X̃)− 3,

e(X̃) =
∑

(−1)idimHi(X̃,C) = Euler number of X̃

and
τ(X ′) = τ(X̃) + #{components of E(X̃ −→ X ′)} = τ(X̃) + 3,

τ(X̃) = signature of X̃ = signature of H2(X̃,R).

The sums in (13), (14) run over all orbital curves Ci, all abelian points Pk on X and all cusp points
Km on X̂. The point contributions can be read off from the molecular graph of the orbital cycle Z(X̂)
connecting the graphs of orbital curves and points as demonstrated in our example in picture 4. Namely,
for abelian points P and cusp points K we have

(15)

he(P) = 1− 1
vd
− 1

v′d
+

1
v′vd

(P :
〈d,e〉
◦−→◦
v v′

in general)

= 1− 1
4
− 1

4
+

1
16

=
9
16

for our special P′s,

3hτ (P) = 3lP + Tr(P )− e

d
− e′

d
(in general)

= 3 · 0 + 0− 0− 0 = 0 for our special P′s,

3hτ (K) = Tr(K) +
4∑

j=1

(3lj − ej

dj
) (in general)

= −3 + 3 · 1− 1
2

= −1
2

for our special K′s.

Thereby lP denotes the length of a resolution curve EP (number of irreducible components of the linear
tree EP of rational curves) of the cyclic singularity P , Tr(P ) the trace of the intersection matrix of
these components, Tr(K) has the same meaning for the intersection matrix of ẼK being the preimage of
EK ⊂ X ′ on X̃. The numbers lj are the lengths of minimal resolutions of the cyclic surface singularities
Qj ∈ X ′ of type 〈dj , ej〉 sitting on EK .

Knowing X̂ = P2 we get e(X̂) = 3, τ(X̂) = 1, hence

e(X̃) = 3 + 6 = 9 , τ(X̃) = 1− 6 = −5

and

(16) e(X ′) = 9− 3 = 6 , τ(X ′) = −5 + 3 = −2.

Now we are able to calculte the heights of X explicitly substituting the local hights (11), (12), (15) and
e(X ′), τ(X ′) into (13), (14), respectively:

(17)
He(X) = 6− (1− 1

4
)(−1)− 3(1− 1

4
)(−1

2
)− 3 · 9

16
− 2 · 3 =

3
16

,

Hτ (X) = −2− 1
3
[(4− 1

4
)(−1

2
) + 3(4− 1

4
)(−1

4
)]− 3 · 0− 3 · (−1

6
) =

1
16

.

Summerizing (Prop ∞), (11) and (17) we proved in this section the following

Proposition 3.1 The orbital surface X̂ of (1) with X̂ = P2 and orbital locus (2) supported by any
Apollonius configuration 2.1, (ii) a),b),c),d) satisfies the proportionality conditions for ball quotient
surfaces described in [H98] (IV.9, Theorem 4.9.2):

he(Ek) = 0 , hτ (Ek) < 0 , k = 1, 2, 3; (Prop ∞)
no condition here because all finite orbital points are abelian; (Prop 0)

he(Ci) = 2hτ (Ci) < 0 , i = 0, 1, 2, 3; (Prop 1)
He(X) = 3Hτ (X) > 0. (Prop 2)

¤
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Until now it is not generally known that the four proportionality conditions are sufficient for X̂ to be a
ball quotient. In section 4 we prove it for our special plane orbital surface. This will be prepared in the
next section translating precise hights and local conditions to geometric lattice conditions on the ball.
For this purpose one has to read backwards the proof of the Proportionality Theorem 4.9.2 in [H98],
well-prepared in the book parts before. In the section after we find an arithmetic ball lattice satisfying
all these conditions.
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4 Ball lattice conditions

We look for an arithmetic ball lattice Γ ⊂ SU((2, 1),C) ⊂ Gl3(C) acting effectively on the complex
two-ball

B = {(z1, z2) = (z1 : z2 : 1) ∈ P2; |z1|2 + |z2|2 < 1} ⊂ P2 = P2(C)

via projective (fractional linear) transformations with postulated data described in 4.1 below (for special
Γ′ instead of general Γ). For the sake of simplicity we assume that all our ball lattices Γ are arithmetical
(arithmetic defined subgrop of SU((2, 1),C)) and that they act effectively on B.

Furthermore we use the following notions, see [H98], especially chapter IV, for more details. A
reflection is an element 1 6= σ ∈ Γ of finite order fixing a subdisc D = Dσ of B pointwise. The disc
Dσ is uniquely determined by σ. It is called a Γ-reflection disc, if such σ ∈ Γ exists. If Γ is fixed we
omit the prefix Γ-, also for further notations depending on Γ. For given subdisc D of B we call σ a
D-reflection, if D = Dσ for a reflection σ. The group of D-reflections in Γ is finite cyclic. Its order is
called the Γ-reflection order at/of D. It coincides, say by definition, with the ramification index of the
natural locally finite quotient map p : B −→ B/Γ along D, and appears as wight of the orbital image
curve D/Γ on the orbital quotient surface B/Γ.

A Γ-cusp is a boundary point κ ∈ ∂B of B such that the unipotent elements of the isotropy group Γκ

form a lattice in the unipotent radical of the parabolic group Pκ(R) of all elemets of SU((2, 1),C) fixing
κ. The set of all Γ-cusps is denoted by ∂ΓB. The quotient map p extends in a continuous manner to a
unique surjective map p∗ : B∗ ³ B̂/Γ from B∗ = B∗(Γ) := B∪∂ΓB onto the Baily-Borel compactification
B̂/Γ of B/Γ, which is a projective surface adding a finite number of normal points to B/Γ.

An element 1 6= γ ∈ Γ is called (honestly) elliptic if it has finite order and is not a reflection. It is
equivalent to say that γ has precisely one fixed point Q on B. In opposition we call Q ∈ B a Γ-elliptic
point, if it is an isolated fixed point of Γ, which means that an elliptic element γ ∈ Γ exists fixing Q.

Two subsets M, N of B∗ are called Γ-equivalent, iff there is a γ ∈ Γ such that N = γ(M). Two
points P, Q ∈ B∗ are said to be Γ-equivalent, iff {P} and {Q} are. The Γ-equivalence classes of Γ-elliptic
points, Γ-cusps or Γ-reflection discs are finite, see [H98].

We look for an arithmetic ball lattice Γ′ satisfying seven special conditions. For the subdiscs Di

below we will use the following notation for the subgroup of all elements acting on Di:

Γ′i := {γ ∈ Γ′; γ(Di) = Di}, i = 0, 1, 2, 3.

Postulates 4.1 for the ball lattice Γ′

(i) There are precisely three Γ′-inequivalent Γ′-cusps κ1, κ2, κ3 ∈ ∂B. The corresponding cusp points
K1,K2,K3 on X̂ := B̂/Γ′ are nonsingular.

(ii) There is up to Γ′-equivalence precisely one Γ′-reflection disc D0 ⊂ B with reflection order 4 such
that κ1, κ2, κ3 ∈ ∂D0 is a complete set of Γ′0-inequivalent cusps for the quotient curve D0/Γ′0.

(iii) Up to Γ′-equivalence there are precisely three Γ′-reflection discs D1, D2, D3 with reflection order
4 supporting at the boundary ∂Dj precisely one cusp up to Γ′j-equivalence, namely κj, j = 1, 2, 3,
respectively.

(iv) Each Γ′-reflection disc is Γ′-equivalent to one of the four discs above.

(v) Up to Γ′-equivalence there are precisely three Γ′-elliptic points O1, O2, O3 ∈ B. They coincide
with the pairwise intersection points of D1, D2, D3 (for suitable choice of the three discs). The
isotropy group Γ′Oj

, Oj := Dk ∩ Dl, {j, k, l} = {1, 2, 3} coincides with the abelian group of order
16 generated by the reflections of order 4 fixing the points of Dk or Dl, respectively.

(vi) The Euler-Bergmann volume of a Γ′-fundamental domain is equal to 3
16 .

(vii) There is a subgroup Σ3 of AutholB isomorphic to S3 normalizing Γ′, which acts on D0 and permutes
D1, D2, D3.
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We illustrate the situation in Picture 8 with a mixed 2- or 3-dimensional imagination (the latter around
D0 with boundary points κ1, κ2, κ3) of the real 4-dimensional unit ball B.
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Figure 8. Representative Γ′-fixed point configuration on B

Theorem 4.2 Under the conditions (i) - (vii) it holds that X̂ = B̂/Γ′ is the projective plane P2. The
compactified branch locus of the quotient map

p : B −→ X = B/Γ′

consists of a quadric Ĉ0 and three tangents Ĉj, j = 1, 2, 3. These curves are the (compactified) images
of the reflection discs D0 or Dj, j = 1, 2, 3, respectively. There is up to PGl3-equivalence an - up to
S3-symmetry - unique projective coordinate system on P2 such that the projective lines Ĉj, j 6= 0, are
the coordinate axes and the quadric has the equation

(18) Ĉ0 : (X + Y − Z)2 − 4XY = X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = 0.

In orbital surface terms we will prove mainly that

4.3 The orbital ball quotient surface X̂ = B̂/Γ′ coincides, up to projective equivalence, with

X̂ = (X̂; Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3)

described in section 2, (1), (2), (3) with properties 2.1 (i), (ii) a),b),c),d) (omitting the symmetry
condition e) here).

The open curves Ci = Ĉi\{K1,K2,K3} are defined as images of the discs Di, i = 0, 1, 2, 3, the points
Pj are the images of the elliptic points Oj , and the cusp points Kj are the images of the cusps κj with
respect to the extended quotient map p∗ : B∗ −→ B̂/Γ′.

We use again the hight calculus for orbital surfaces developed in [H98] based on equivariant K-theory.
The orbital heights of orbital ball quotient surfaces are links between differential geometric volumes of
fundamental domains and algebraic-geometric invariants of surfaces or embedded curves. Mainly Euler
heights he and signature heights hτ are used. We dispose on the following strong

Theorem 4.4 ([H98], IV, Theorem 4.8.1, first part) For ball lattices Γ ⊂ U((2, 1),C) with open orbital
ball quotient B/Γ it holds that

He(B/Γ) = covolEB(Γ) := volEB(FΓ) := volγ2(FΓ).

¤

Thereby FΓ denotes a Γ-fundamental domain on B, and the volume is taken with respect to the
U((2, 1),C)-invariant Euler-Bergmann (volume) form γ2 = 1

3γ1 ∧ γ1 on B with γ1 = −3ω (Kähler-
Einstein relation) the Ricci form and ω the Kähler form of the Bergmann metric on B. For these details
we refer to [BHH], Appendix B.
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From this theorem and condition (vi) for Γ′ we get

(19) covolEB(Γ′) =
3
16

The signature form on B can be proportionally defined to be σ = 1
3 (γ1 ∧ γ1 − 2γ2). As for Euler hights

we have

Theorem 4.5 ([H98], IV, Theorem 4.8.1, second part) For ball lattices Γ ⊂ U((2, 1),C) it holds that

Hτ (B/Γ) =
1
3
covolEB(Γ) = covolσ(Γ) = volσ(FΓ).

¤

This is the origin of the proportionality relation (Prop 2) for orbital ball quotient surfaces B/Γ.
From condition (vi) for Γ′ we get now

(20) Hτ (B/Γ′) =
1
3
He(B/Γ′) =

1
16

Now we change our attention to orbital curves comig from discs. Let D ⊂ B be a (linearly embedded
complete) disc whose image on B is an algebraic curve D/Γ on B/Γ (Γ-disc). For the finer object, the
orbital curve D/Γ ⊂ B/Γ. Euler hight and covolume are connected by

Theorem 4.6 ([H98], IV.7, first part of (4.7.7))

he(D/Γ) = covolEP (ΓD) := volEP (FΓD) := volη(FΓD),

¤

where

(21) ΓD := NΓ(D)/ZΓ(D)

is the effectivized subgroup of all elements of Γ acting on D,

(22) NΓ(D) = {γ ∈ Γ; γ(D) = D}, ZΓ(D) = {γ ∈ Γ; γD = idD}.

The volume of a ΓD-fundamental domain FΓD is taken with respect to the U((1, 1),C)-invariant Euler-
Poincaré form η on D. This explicitly well-known volume form is normalized in such a way that the
hight he of any compact quotient curve C of D by a torsion free D-lattice N is nothing else but the Euler
number e(C) = 2− 2g < 0, g the genus of C. Assume for a moment that N = NG(D) for a torsion free
cocompact ball lattice G and K is a canonical divisor of the smooth compact algebraic surface B/Γ. By
relative proportionality, see [BHH], appendix B.3.E, it holds that 3e(C) = −2(K ·C). Together with the
adjunction formula −(K ·C) = e(C)+(C2) one gets e(C) = 2(C2). In order to calculate selfintersection
numbers by means of volumes we define adequately the signature form on D to be 1

2η. We proved also

Theorem 4.7 ([H98], IV.7, second part of (4.7.7))

hτ (D/Γ) =
1
2
covolEP (ΓD) =

1
2
volη(FΓD).

¤

This is the origin of proportionality condition (Prop 1) for orbital disc quotients on ball quotient surfaces.
Especially we get

(23) 2hτ (D/Γ′i) = he(D/Γ′j) i = 0, 1, 2, 3.

Now we check the admissibility of our cusp conditions, see (Prop∞). There are precisely 3 cusp points
K1,K2,K3 on B̂/Γ′ coming from κ1, κ2, κ3 (condition (i)). The possible graphs of the corresponding
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orbital cusp points K1,K2,K3 are classified in [H98], III.3.5. We denote one of these points, say the
first, by κ, K or K, respectively. In general, each cusp point is the quotient of an elliptic singularity by
a cyclic group Gκ of order 1, 2, 3, 4 or 6, see [H98], IV.4.5. Since two 4-reflection discs go through our
special κ and there are no 2-reflection discs (condition (iv) and (ii), (iii) before), the group Gκ is cyclic
of order 4, and the graph of K must look like
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Figure 9.

(-1 in the box will be explained below, see (24). This means that K has a canonical smooth rational
resolution curve Eκ supporting a surface singularity of cyclic quotient type 〈2, 1〉. In [H98] we call it the
cusp curve corresponding to the center of the resolution graph 9 of κ. Remember that we have three
of them: E1, E2, E3 corresponding to κ1, κ2, κ3, which are contracted to K1,K2,K3, respectively, along
the birational morphism X ′ −→ X̂ = B̂/Γ′. Resolving the three singularities of type 〈2, 1〉 by rational
-2-curves we get a birational morphism X̃ −→ X ′ with three connected exceptional curves Lj + Ej on
X̃ contracted to the nonsingular points Kj along X̃ −→ X̂ by the last part of condition (i). Omitting
indices again, the smooth rational components L, E intersect each other transversally and (L2) = −2.
The contraction to a nonsingular point is only possible, if E has on X̃ selfintersection (E2)X̃ = −1. So
for all proper transforms of Ej on X̃ we get

(24) (E2
j )X̃ = −1, j = 1, 2, 3.

Proposition 4.8 The compactified ball quotient surface X̂ = B̂/Γ′ is smooth. Moreover, the closures
Ĉi of Ci := Di/Γ′, i = 0, 1, 2, 3, on X̂ are smooth curves.

Proof. The singularities of any Baily-Borel compactified ball quotient surface come from (honest)
elliptic points and cusps. The cusp points Kj are nonsingular by (i). By condition (v) there are only
three points Pj ∈ B/Γ′ with elliptic preimages, namely the images of Oj , j = 1, 2, 3. Let O be one
of them. The corresponding isotropy group Γ′O is generated by reflections, see condition (iv) again.
Therefore the points Pj are nonsingular (Chevalley criterion [Bou], V.5 Theorem 4); for our application,
see [H98], I.1, Lemma 1.1.1 and IV.5, proof of Lemma IV.5.9). Now it is clear that X̂ has to be smooth.

We denote by Ĉ be an arbitrary one of the curves Ĉi ⊂ X̂ and by C ′ its proper transform on X ′.
Assume that Ĉ goes through one of our cusp points K with canonical resolution curve E on X ′. Its
preimage on B is one of the Γ′-reflection discs D = Dj . It corresponds to one of the 〈4, 0〉 arrows in
the cusp diagram 9. Looking down again to X ′ this diagram teaches us that C ′ intersects E locally
transversal at (at most two) nonsingular surface points. By (ii) and (iii) E is intersected by precisely
two of the reflection curves C ′j because the cusps κi are boundaries of precisely two of the corresponding
reflection discs, see picture 8. So C ′ intersects E at one point only. Because of transversality this is a
nonsingular point of C ′. This point remains nonsingular on Ĉ ⊂ X̂ after contraction of E (or of L + E
starting from X̃). Locally around E1, E2, E3 the intersection behaviour of these curves on X ′ with C ′j ,
j = 0, 1, 2, 3, is described in Picture 2.

It remains to be proved that the non-compact curves Cj ⊂ B/Γ′ are smooth. In [H98], IV.4,
we proved that for Γ′-rational discs D on B the natural map D/Γ′D −→ D/Γ′ is the normalization
(singularity resolution) of the latter curve on B/Γ′. Our Γ′-reflection discs are arithmetic because Γ′ is.
Curve singularities on D/Γ′ come from (honest) Γ′-cross points Q on D. Such a point Q is characterized
by the property that through Q goes a Γ′-equivalent disc D′ not being Γ′Q-equivalent, see [H98], IV,
Definition 4.4.5 and Proposition 4.4.6. Assume that Q is a Γ′-cross point of D. Then it is the intersection
point of two Γ′-reflection discs D = Dσ, D′ = Dδ belonging to reflections σ, δ ∈ Γ′, say. Then Q is
an elliptic point because it is fixed also by the elliptic element σδ, which is not a reflection, because
its representation on the tangent space TQ = TQ(B) at Q ∈ B has two non-trivial eigenvalues, namely
the non-trivial eigenvalue of σ and the non-trivial eigenvalue of δ. The only Γ′-elliptic points are the
Γ′-orbits of O1, O2, O3 by condition (iv). So we can assume without loss of generality that Q is one of

17



these points, say Q = O3 = D1 ∩ D2, D = D1 = Dσ. The disc D′ cannot coincide with D2 because the
latter disc is not Γ′-equivalent with D1 by (iii). Therefore Q is the intersection point of three different
reflection discs. But then the isotropy group Γ′Q is not abelian because their elements produce at least
three eigenlines in TQ by the directions of the three reflection discs through Q. This contradicts to
the second part of condition (iv). Hence, there is no Γ′-reflection disc D with Γ′-cross point; the image
curves are smooth. This finishes the proof of the proposition.

¤

It follows that the orbital quotient surface looks like

B̂/Γ′ = X̂ = (X̂; Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3)

we startet with in section 1 not knowing until now that X̂ = P2. Moreover, we have to prove the
properties (i), (ii) a),. . . ,d) before definition 2.1. Let us start with

c′) P1, P2, P3 are the three different intersection points of the curves
C1, C2, C3.

This follows now immediately from (iv), because an intersection point of two of these reflection curves
is necessarily an image point of Γ′-elliptic point. Up to Γ′-equivalence there are only three of them,
namely O1, O2, O3.

d′) Ĉj and Ĉ0 touch each other at Kj (with local intersection number 2), j = 1, 2, 3.

Ĉ0 goes through each of the cusp points Kj by (ii). The other reflection curve through Kj is Ĉj by
(iii), see Figure 8. From the intersection graph 9 we deduced the intersection behaviour of the curves
C ′0, C

′
j , Ej locally around Ej , which is described in picture 2. Going back to X̃ we blow down first the

-1-curve Ej . On the corresponding surface the proper transforms of C ′0 and C ′j intersect each other
transversally. The proper transform of the -2-curve L becomes a smooth rational -1-curve denoted by
L again supporting this intersection point. The intersection of the two C-curves with L are transversal,
too. Now blow down the -1-curve L to Kj to see that the local situation of touching we look for is
well-described in picture 1.

Now we relate Euler numbers ei with selfintersections s′i of C ′i on X ′ for i = 0, 1, 2, 3 using geometric
height formulas (11), (12) for orbital curves C on open orbital surfaces:

he(C) = e(C ′)−
∑

(1− 1
vidi

)−#C ′∞ ,

hτ (C) =
1
v
[(C ′2) +

∑ ei

di
+

∑ ej

dj
] .

The sums on the right-hand side can be read off from the atomic graph of the orbital curve C (or
compact orbital curve C′ = (vC ′;

∑
Pi +

∑
Km) which have been already described in Figure 3.

Filling these contributions in the hight formulas we get together with (Prop 1), see 23,

(25)

he(C0) = e0 − 3,

he(Cj) = ej − (1− 1
4
)− (1− 1

4
)− 1 , j = 1, 2, 3;

1
2
he(C0) =

1
4
(s′0 + 0 + 0),

1
2
he(Cj) =

1
4
(s′j + 0 + 0) , j = 1, 2, 3.

It follows that
s′0 = 2e0 − 6 , s′j = 2ej − 5 , j = 1, 2, 3.

Blowing down the three rational -1-curves and the three rational -2-curves on X̃ to the cusp points
K1,K2,K3 we get on X̂ the selfintersections s0 = s′0 +6, s := sj = s′j +2 for the curves Ĉi, i = 0, 1, 2, 3,
because Ĉ0 goes through all three cusp points and each Ĉj only through one of them. It follows that

s0 = 2e0 , s = 2e− 3, e := ej = e(Ĉj), j > 0.
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In a similar opposite use of hight formulas in comparision with their calculation in the previous
section we can calculate now the Euler number and signature of X̂ using (13) and (14):

He(X) = e(X ′)−
∑

(1− 1
vi

)he(Ci)−
∑

he(Pj)− 2#{rational cusp points}

Hτ (X) = τ(X ′)− 1
3

∑
(vi − 1

vi
)hτ (Ci)−

∑
hτ (Pj)−

∑
hτ (Km)

The point contributions have been already substituted in 3, see (17). The left-hand sides are known
from (20). So we get with the above substitutions (hτ (Cj) = s′/4 = (2e− 5)/4 ...)

3
16

= e(X ′)− (1− 1
4
)(e0 − 3)− 3(1− 1

4
)(e− 5

2
)− 3 · 9

16
− 2 · 3

1
16

= τ(X ′)− 1
3
[(4− 1

4
)(2e0 − 6)/4 + 3(4− 1

4
)(2e− 5)/4]− 3 · 0− 3 · (−1

6
).

Set E := e(X̂) = e(X ′)− 3 and S := τ(X̂) = τ(X ′) + 3. After substitution we obtain

(26)
8E + 6(3− e0) + 9(5− 2e) = 39,

16S + 10(3− e0) + 15(5− 2e) = 41

Proposition 4.9 Let Y be a smooth compact complex algebraic surface supporting a configuration L0 +
L1 + L2 + L3 with smooth curves Li, i = 0, 1, 2, 3 intersecting pairwise in at least one point. Assume
that the invariants E = e(Y ), S = τ(Y ), e0 = e(L0) and e = e(Lj), j = 1, 2, 3 satisfy the relations (26).
Then Y = P2, and the curves L′is, i = 0, 1, 2, 3, are rational.

Proof. We need some basic facts of surface classification theory, which can be found in [BPV], for
instance. Adding the first to the second equation of (26) we get the relation

(27) 64χ + 22(3− e0) + 33(5− 2e) = 119

for the arithmetic genus χ = χ(Y ) = 4(E + S) of Y . The integers

(28) 3− e0 = 2g0 + 1 , 5− 2e = 4g + 1 ,

where g0, g are the genera of L0 or Lj , j > 0, respctively, are positive. From (27) we get χ < 0 or

(29) χ(Y ) = 1, g0 = g(L0) = 0, g = g(Lj) = 0.

We exclude the former case: Assume that χ < 0. Then Y has negative Kodaira dimension. By
surface classification theory Y must be a (blown up) ruled surface over a smooth compact curve B of
genus q, say. The arithmetic genus of Y is equal to χ = 1− q < 0. The fibres of the fibration Y −→ B
are linear trees of rational curves. Since, by assumption, L1 + L2 + L3 is a connected cycle it cannot
belong to any finite union of fibres. Therefore one of the components covers B finitely. It follows that
g ≥ q. The identity (27) yields

64(1− q) + 22(1 + 2g0) + 33(1 + 4g) = 119,

hence 11g0 + 33g = 16q, which contradicts to g ≥ q > 1.
We proved that the relations (29) must be satisfied. Altogether we solve(d) the simple linear system

26 of diophantine equations coming from the Proportionality Theorem. We get the surface invariants

χ = 1, E = 3, S = 1, (K2) = 9, (K2)/E = 3,

where (K2) = 12χ−E is the selfintersection index of a canonical divisor K on Y . We proved also that
Li, i = 0, 1, 2, 3, is rational by (29).

The extreme Chern quotient (K2)/E = 3 with positive Euler number E is only possible for Y = P2

or for compact ball quotient surfaces B/Γ for torsion free ball lattices Γ by a theorem of Miyaoka-Yau,
Kodaira-classification of surfaces and fine classification of rational surfaces, see [H98], V.2, Proposition
5.2.4, and the references given there. But B, hence also B/Γ, is hyperbolic in the sense of Kobayashi.
Therefore it does not support any rational curve. The compact ball quotient case is excluded by the
rationality of Li ⊂ Y . Therefore Y must be the projective plane. ¤
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Corollary 4.10 If Γ′ satisfies the conditions (i),...,(vii), then X̂ = B̂/Γ′ is the projective plane, P2, Ĉ0

is a quadric and Ĉ1, Ĉ2, Ĉ3 are tangent lines. In other words, Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 is a plane Apollonius
configuration.

Proof. We have only to summerize. X̂ is a smooth surface by 4.8. Moereover, as Baily-Borel compact-
ification X̂ is projective, hence algebraic. We proved already that our four curves Ĉi are smooth, see
Proposition 4.8. Together with c′), and (26) the assumptions of the proposition are satisfied. Therefore
hatX = P2 and our curves are rational. More precisely, from Bezout’s theorem and the intersection
behaviour described in c′, d′ follows that the configuration is of Apollonius type.

¤

Now we finish the proof of 4.3 and Theorem 4.2. The projective lines Ĉj can be used as coordinate
lines X = 0, Y = 0, Z = 0 of P2 such that the configuration divisor Ĉ0 + Ĉj + Ĉ1 + Ĉ1 is S3-invariant by
Proposition 2.4 and Corollary 2.5 with the natural projective action of S3 on P2 permuting coordinates.
The uniqueness of the equation (18) of Ĉ0 comes from (the proof) of Lemma 2.10 verifying that this
equation is the only S3-symmetric possibility. Theorem 4.2 is proved.

The weights for the orbital cycle of a smooth orbital ball quotient surface come from reflection
orders only, by definition. Therefore 4.3 follows now from these order postulates in 4.1 (ii),(iii) and from
postulate (iv) forbidding other branch curves beside of Ci, i = 0, 1, 2, 3.

¤
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5 The Gauss congruence ball lattice

Let Q(i), i =
√−1, be the field of Gauss numbers and O = Z[i] = Z+Zi the (maximal) order of Gauss

integers in it. The center Z of the unitary group

Γ̃ := U((2, 1),O) = {g ∈ Gl3(O); tḡ
(

1 0 0
0 1 0
0 0 −1

)
g =

(
1 0 0
0 1 0
0 0 −1

)
}

with Gauss integers as coefficients is generated by
(

i 0 0
0 i 0
0 0 i

)
. The ineffective kernel of the action of Γ̃ on the

ball B coincides with Z. We concentrate our attention to the special Gauss ball lattice Γ := SU((2, 1),O),
which is an arithmetic ball lattice acting effectively on B. It holds that Γ̃ = Z · Γ. The isomorphisms

Γ̃/Z ∼= Γ ∼= PU((2, 1),O) ∼= PSU((2, 1), O)

allow us to identify (sometimes, if we want) these groups. The most important role plays the congruence
subgroup Γ′ := Γ(1+ i) (Gauss congruence ball lattice) of the prime ideal of Z[i] generated by the prime
divisor 1 + i of 2 with residue field F2.

We want to prove the following

Theorem 5.1 The arithmetic ball lattice Γ′ satisfies all conditions (i),..,(vii) of 4.1. The Baily-Borel
compactification B̂/Γ′ is equal to P2 with Apollonius configuration 1 supporting the orbital cycle of B̂/Γ′.

An essential role in the proof plays the theory of hermitian lattices, which is not so difficult in the case
of O− lattices with small ranks, because O is an euclidean ring. The basic lattice is Λ := O3 endowed
with the indefinite unimodular hermitian form

〈 , 〉 : Λ× Λ −→ O , 〈
(

a1
a2
a3

)
,

(
b1
b2
b3

)
〉 = a1b̄1 + a2b̄2 − a3b̄3.

We consider Γ as group of unimodular automorphisms of the hermitian O-lattice Λ := O3. Then Γ′

consists of all elements of Γ which restrict to an automorphism of the sublattice Λ′ := (1 + i)Λ. The
factor group Γ/Γ′ acts effectively on the residue space Λ/Λ′ ∼= F3

2. The hermitian structucture on Λ
reduces to the canonical non-degenerate bilinear form on F3

2. Therefore Γ/Γ′ appears as subgroup of the
corresponding orthogonal group O(3,F2). This group consists of permutation matrices only, because the
canonical basis vectors of F3

2 are the only ones with (F2)-norm 1 and norm 1 vectors in its orthogonal
complement. Hence Γ/Γ′ ⊆ O(3,F2) ∼= S3.

We want to prove that the inclusion is the identity. It suffices to find two non-commuting elements
in Γ/Γ′. Let a ∈ O3 be a vector whose hermitian norm a2 := 〈a, a〉 is equal to ±1 or ±2. We define the
reflection Ra : O3 −→ O3 by

Ra : z 7→ z− 2
a2
〈z, a〉a.

It sends a to −a and each vector of the orthogonal complement

Λa := {u ∈ O3; u ⊥ a}

to itself. Therefore id 6= Ra is an isometry of Λ. Its reduction R̄a (modulo 1 + i) is the reflection
isometry

rā : F3
2 −→ F3

2 , z̄ 7→ z̄− (z̄, ā)ā,

where we overline by bar all kinds of reductions modulo 1 + i. This is a non-trivial isometry if and only
if a2 = ±2 and a 6≡ o modulo 1 + i.

The following examples yield two such reflections. Take

a =




1 + i
1
1


 , b =




1
i
0


 .

Both have norm 2. As reductions of the corresponding reflections we get r(0,1,1) or r(1,1,0) with matrix

representations
(

1 0 0
0 0 1
0 1 0

)
or

(
0 1 0
1 0 0
0 0 1

)
, respectively. Obviously, they generate O(3,F2).
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Lemma 5.2 We have an exact group sequence

red
1 −→ Γ′ −→ Γ −→ S3 −→ 1.

with a section S3 −→ Γ sending S3
∼= O(3,F2) to the stationary group ΓPc := {γ ∈ Γ; γ(c) ∈ Oc} for a

vector c ∈ O3 with negative norm c2 = −3.

Proof. The left-exact part comes from the definition of Γ′ as kernel of the reduction homomorphism

red
Γ = SU((2, 1), O(1 + i)) −→ SU((2, 1), O/iO) ∼= O(3,F2) .

The surjectivity of the reduction homomorphism has just been verified. The reflections Ra and Rb (a, b

as above), act trivially on the orthogonal complements Λa or Λb, respectively, hence they fix c =
(

i
1

2−i

)

generating the rank one lattice Λa ∩Λb. The norm 2 vectors a, b have been choosen in such a way that
their Gram matrix is (

a2 〈a, b〉
〈b, a〉 b2

)
=

(
2 1
1 2

)
,

hence

Ra : a 7→ −a, b 7→ b− a, c 7→ c;
Rb : a 7→ a− b, b 7→ −b, c 7→ c.

Looking at the corresponding matrix representation it is clear that the subgroup of ΓPc generated by
−Ra, −Rb is isomorphic to S3.

¤

More generally we define reflections ρ ∈ U((2, 1),C) as elements of finite order with precisely two
different eigenvalues. The eigenspace E(ρ) of the double eigenvalue of ρ is called the reflection plane
of ρ. We call ρ a B-reflection, iff E(ρ) is an indefinite hermitian subspace of C3. In this case (only)
D(ρ) := PE(ρ) ∩ B is a complete (linear) subdisc of B called the reflection disc of ρ. The complete
linear subdisc D of B is called a Γ-reflection disc iff there exists a B-reflection ρ ∈ Γ such that D = D(ρ).
Starting from D the D-reflection group ZΓ(D) defined in (22) is finite and cyclic. Its order is called the
reflection order of D w.r.t. Γ. The latter definitions apply to any ball lattice Γ ⊂ U((2, 1),C).

Proof of Theorem 5.1(i). The second statement follows from the first by Theorem 4.2. So we have
to check step by step the properties (i),...,(vii) of 4.1.

(i) By a result of Shvartsman [Sv1],[Sv2], the surface B̂/Γ has only one cusp point. We refer to [Zin]
for the more general result, that the number of cusp points of Picard modular surfaces ̂B/U((2, 1), OL),
L an arbitrary imaginary quadratic number field, coincides with the class number of L. It is also known
that B∗ = B ∩ ∂B(L) setting ∂B(L) = ∂B ∩ P2(L) in this case.

With the above notations we get ∂ΓB = ∂B(Q(i)) = Γκ with κ = Pk, for each

k ∈ Λ0 := {a ∈ Λ; a2 = 0}

because ∂B(Q(i)) = PΛ0. The set Λ0 maps onto

V̄0 := {



0
0
0


 ,




0
1
1


 ,




1
0
1


 ,




1
1
0


} ⊂ F3

2

by reduction. The group S3 = Γ/Γ′ acts effectively on V̄0 with bi-transitive restriction on the non-zero
vectors. It follows that Γ acts bi-transitively on ∂ΓB/Γ′ completely represented by

k1 = (0 : 1 : 1), k2 = (1 : 0 : 1), k3 = (1 : 1 : 0)

with ineffective kernel Γ′. Especially we get up to Γ′-equivalence precisely three cusps. This proves the
first part of (i).
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For the proof of the second part and later use we introduce the notations

X := B/Γ′ ⊂ X̂ := B̂/Γ′, Y := B/Γ ⊂ Ŷ := B̂/Γ.

We know that Y = X/S3 ⊂ Ŷ = X̂/S3 considering S3 = Γ/Γ′ now as subgroup of Aut X = Aut X̂. If
z = Pz, z ∈ C3, is a point of B∗ we denote its image on X by Z. The quotient map of B onto B/Γ′

is denoted by p′. These notations will be preserved also for the extensions of this projections to B∗.
Since the cusp points Ki = p′(ki) are S3-equivalent, it suffices to show that an arbitrary one of them
is non-singular. We move the ball inside of P2 such that ∞ := (0 : 0 : 1) becomes a Q(i)-rational
boundary point of the image ball gB. For this purpose we choose g ∈ Gl3(O) such that

tḡ




0 0 −i
0 1 0
i 0 0


 g =




1 0 0
0 1 0
0 0 −1


 .

Such choice is possible. Namely the Z-lattices (Z3,
(

1 0 0
0 1 0
0 0 −1

)
) and (Z3,

(
0 0 1
0 1 0
1 0 0

)
) are isometric because

they are unimodular, indefinite and have same rank, signature and type (defined by norms modulo 8).
We refer to ([Se70], V.2). The isometry can be extended to isometries of hermitian O-lattices

(O3, I) ∼= (O3,
(

0 0 1
0 1 0
1 0 0

)
) ∼= (O3,

(
1 0 0
0 1 0
0 0 −1

)
) = Λ, I =

(
0 0 −i
0 1 0
i 0 0

)
,

where the added first one is obvious. We get the Siegel domain

gB = PV− : 2Imu− |v|2 > 0,

V = (C3, I) = C⊗ (O3, I) = C⊗ gΛ , V− = {x ∈ V ; 〈x, x〉I < 0}
On gB act G := gΓg−1 = SU(I, O) and its congruence subgroup G′ = G(1 + i) = gΓ′g−1 with quotient
group G/G′ = Γ/Γ′ = S3. The stationary group of Γ at ∞ is generated by

(
i 0 0
0 −1 0
0 0 i

)
and by its unipotent

part

U∞(O) = {



1 iā i
2 |a|2 + r

0 1 a
0 0 1


 =: [a, r]; a ∈ C, r ∈ R} ∩ Sl3(O),

see [H98], IV.2, also for the next considerations. As torsion free nilpotent group of rank 3 each unipotent
ball lattice has three generators. As generators of the unipotent congruence subgroup U∞(O)′ one finds
[1+i, 1], [1−i, 1] and [0, 2]. The covolume of Z(1+i)+Z(1−i) in C and the covolume of 2Z in R are both
equal to 2. The selfintersection of the elliptic curve T∞ = T∞(G′) in the cusp bundle F∞ = F∞(G′)
coincides with the characteristic number t of the unipotent lattice. This number can be calculated as
-2 times the covolume volume quotient 2

2 , hence (T 2
∞) = t = −2.

Now consider T∞ as embedded curve in F∞ . Endowed with trivial weight 1 it is an orbital curve
T∞. In order to get the canonical partial resolution of a cusp point K of X̂ we look at the canonical
abelization X′ −→ X̂ of the orbital surface X̂ = B̂/Γ. Following [H98], IV.5, the canonical orbital
resolution E = EK of K concides with the orbital quotient curve T∞/Z4 with Z4 = 〈σ〉 generated by
the reflection σ =

(
i 0 0
0 −1 0
0 0 i

)
. From the classification of cusp points by resolution graphs in [H98], III.5,

we know that K has to be of type (2,4,4), which means that EK = (P1; P1 + P2 + P3) with abelian
points P1, P2, P3 of cyclic type 〈2, e1〉, 〈4, e2〉, 〈4, e3〉, respectively. We determine these types precisely
together with the selfintersection (E2) on the minimal resolution X̃ of X ′. For this purpose we calculate
the signature hights of our orbital curves, see (10). First we receive hτ (T∞) = (T 2

∞) = −2. Now we use
the following

Proposition 5.3 ([H98], Theorems II.2.4, II.4.2). If C −→ D is Galois-finite morphism of orbital
curves and h = he or h = hτ denote Euler hights or signature hights, respectively, then it holds that

h(C) = [C : D]h(D), [C : D] = deg(C −→ D).

¤
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Applied to the Galois-covering T∞ −→ E of degree 4 we get

hτ (E) =
1
4
· hτ (T∞) =

1
4
· (−2) = −1

2
.

The explicit formula (10) for signature hights yields

−1
2

= (E2) +
e1

2
+

e2

4
+

e3

4
, ej ∈ N,

where the summands have to be smaller than 1. Since a Γ-reflection of order 4 belongs to the cusp
group at least one abelian point on E, say P3 has to be of type 〈4, 0〉. The last identity reduces to

(E2) = −1
2
− e1

2
− e2

4
> −2,

hence (E2) = −1 because the selfintersection must be negative (E is contractible to the cusp point K).
Below we will see that there is no Γ′-reflection disc with Γ′-reflection order 2, see 7.10. Therefore P1

cannot be of type 〈2, 0〉, hence e1 = 1, e2 = 0.
We proved that the graph of the orbital cusp point K is already drawn in figure 7. So E is a

projective line supporting precisely one singular surface point P = P1, (E2) = −1, P of type 〈2, 1〉 as it
has been drawn already, for E1 say, in figure 2. Therefore E contracts to the non-singular surface point
K. The proof of property (i) is finished.

¤
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6 Unimodular sublattices

Let K = Q(i) be the Gauß number field, O = Z[i] the ring of Gauß integers, V a finite dimensional
K-vector space of dimension n with a hermitian metric < , > with values in K. An O-module Λ ⊂ V ,
more precisely (Λ, <,>|Λ), is called a sublattice of V , and a V -lattice, if moreover n coincides with
the rank (O− rank) of Λ. A hermitian O-module Λ is a torsion free O-module of finite rank together
with an hermitian form with values in K. It is a V -lattice in V = K ⊗ Λ endowed with the extended
hermitian form. The dual lattice of Λ is the V -lattice

Λ# = {x ∈ V = K ⊗ Λ;< x, l >∈ O for all l ∈ Λ}.

Notice that Λ ⊆ Λ# iff the hermitian form has (only) integral values on Λ. A hermitian O-lattice is
called unimodular iff Λ# = Λ. This happens if and only if the hermitian form has integral values on Λ
and the discriminant d(Λ) is a unit (±1). Two subsets M, N of a hermitian O-lattice are orthogonal,
iff < m, n >= 0 for all m ∈ M, n ∈ N . We write M⊥N in this case. The orthogonal complement of M
in Λ is the sublattice

M⊥ = M⊥
Λ = {l ∈ Λ; l⊥M}.

(We omit the index Λ if Λ is fixed and there is no danger of misunderstandings). Two sublattices M, N
of Λ are called orthogonal complementary (in Λ), iff M ∩N = O, M⊥ = N and N⊥ = M .

Proposition 6.1 Let (Λ, < , >) be a unimodular hermitian O-lattice, M and N orthogonal comple-
mentary sublattices of Λ, then M#/M ∼= N#/N as O-modules.

Proof. Let pK be the orthogonal projection of V = K ⊗ Λ along U = K ⊗M onto W = K ⊗N and p
its restriction to Λ. Since M = Λ ∩N⊥, by assumption, we get the left-exact sequence of O-modules

0 M Λ N# 0.- - -p -

This sequence is exact. For the proof take an element f ∈ N#. It defines a covector F∗ =< f, . >∈ W ∗

with integral values on N . Its restriction to N# is denoted by f∗. Since Λ is a unimodular hermitian
lattice, the pull back p∗(f∗) = f∗ ◦ p is equal to v∗ =< v, . > on Λ for a unique v ∈ Λ. For any n ∈ N#

we calculate
< p(v), n >=< v, n >= v∗(n) = f∗(p(n)) =< f, p(n) >=< f, n >,

hence f = p(v). For the same reasons we dispose with obvious notations also on the exact sequence

0 N Λ M# 0- - -q -

of O-modules. From both exact sequences we get the O-module isomorphisms

M#/M ∼= Λ/q−1(M) = Λ/(N + M) ∼= N#/N.

¤

Corollary 6.2 Under the conditions of the proposition, M is unimodular if and only if its Λ-orthogonal
complement N is unimodular.

Proof. The following conditions are equivalent: M is unimodular, M#/M = O, N#/N = O, N is
unimodular.

¤

For arbitrary hermitian O-lattices Λ and sublattices M we denote by AutΛ ⊂ EndOΛ the isometry
group of Λ and by Aut(Λ, M) its subgroup of isometries sending M to M .

Corollary 6.3 Let Λ be a unimodular hermitian O-lattice, M a unimodular sublattice and N its or-
thogonal complement in Λ. Then Λ = M ⊕N and

Aut(Λ, M) = Aut(Λ, N).
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Proof. M and N are orthogonal complementary in Λ because each m ∈ Λ ∩N⊥ belongs to M# = M .
By 6.2 N is unimodular, too. Now decompose l ∈ Λ in l = m + n, m ∈ K ⊗M , n ∈ K ⊗N . Obviously,
m ∈ M# = M and n ∈ N# = N . This proves the first statement, the second follows immediately.

¤

We need classification results for unimodular lattices.

Proposition 6.4 (see Hashimoto [Has], Prop. 3.8). Let (V, < , >) be a hermitian space of dimension
r over K of signature (p+, p−) which contains a unimodular V -lattice (O-sublattice of V of rank r).

(i) If r is odd, then there is only one genus of unimodular V -lattices.

(ii) If r is even, then the set of unimodular V -lattices consists of at most two genera. The cardinality
of this set is 2 if and only if p− ≡ r/2 modulo 2.

¤

A genus consists, by definition, of all V -lattices which are locally U(V )-isometric at all natural primes
p. More precisely, two such lattices M , M ′ belong to the same genus iff for each natural prime p there
exists

γp ∈ U(Vp), Vp = V ⊗Qp = V ⊗Kp

endowed with the < , >-extending form, sending Mp = M ⊗ Zp = M ⊗Op to M ′
p. The V -lattices M ,

M ′ belong to the same class if and only if g(M) = M ′ for a suitable g ∈ U(V ).

Proposition 6.5 (see Hashimoto [Has], Theorem 3.9). If the hermitian metric on V is indefinit, then
each genus of unimodular V -lattices consists of one class.

¤

Corollary 6.6 There are precisely two isometry classes of indefinite unimodular hermitian O-lattices of
rank 2; one is odd and the other even. They are represented by (O2,

(
1 0
0 −1

)
) or (O2, ( 0 1

1 0 )), respectively.

Proof. Let Λ be an unimodular indefinite hermitian O-lattice of rank 2 and V = Λ ⊗ K. Since the
signature of V = (V,< , >) must be (1,−1), we know from Proposition 6.4 (ii) that there exist precisely
two unimodular genera of V -lattices. From Proposition 6.5 follows that there are precisely two classes
of such lattices. The members of each class are isometric. The discriminant d(Λ) is −1 because Λ is
unimodular (and indefinite). Therefore the discriminants of V and (K2,

(
1 0
0 −1

)
) coincide. Dimensions,

discriminants and signatures form a complete set of invariants of isometry classes of non-degenerated
hermitian vector spaces over K by a basic theorem of Landherr [Lan]. Therefore V and K2 are isometric.
It follows that Λ is isometric to precisely one of the two standard lattices announced in the corollary.

¤

Corollary 6.7 All definite unimodular hermitian O-lattices Λ of rank 2 are isometric to the standard
lattice (O2, ( 1 0

0 1 )).

Proof. Since the discriminant of Λ (and V = K ⊗ Λ) is +1 we can assume, by Landherr’s theorem
again, that V = K2 endowed with standard metric. There is only one genus of definite unimodular
K2-lattices by Proposition 6.4 (ii). The class number of the genus can be read off as h(4, 2) = 1 in
the table of [Has], p. 76, where 4 comes from 4-th unit root generating our cyclotomic field K, and 2
denotes the lattice rank.

¤

We say that two hermitian O-lattices with integral values have the same parity, iff they are both odd
or both even, respectively. Let Γ̃ = Γ̃(Λ) be the automorphism group of a fixed hermitian O-lattice Λ,
and Γ′ a subgroup of finite index. A Γ′-class of sublattices of Λ is a Γ′-orbit of one (arbitrary) sublattice
of Λ. The normal subgroup of elements with determinant 1 of any subgroup G of the linear group of a
finite dimensional vector space is denoted by SG. Usually we set

(30) Γ = Γ(Λ) := SΓ̃ = SΓ̃(Λ).
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Theorem 6.8 Let Λ be an indefinite unimodular O-lattice of signature (p+, p−) of odd rank r = p++p−.
With the above notations it holds that:

(i) If p+ ≥ 2, then there exists precisely one Γ̃ -class containing a definite unimodular sublattice of
rank 2.

(ii) If p− ≥ 2 or (p+, p−) = (2, 1), then there exist precisely two Γ̃-classes of indefinite unimodular
rank-2 sublattices.

The parity and discriminant form under the conditions of (ii) a complete invariant system for Γ̃-classes
of unimodular rank-2 sublattices of Λ.

Proof. Λ is isometric to Or with diagonal standard form diag(1, .., 1,−1, ..,−1) corresponding to the
given signature. This follows from the Propositions 6.4 (i) and 6.5 (uniqueness of genus and class) and
Landherr’s theorem. It is immediately clear that under the given conditions definite or odd indefinite
unimodular rank-2 sublattices exist. But also even ones under the conditions of (ii), namely the lattice
generated by

(
1
0
1

)
and

(
0
1
1

)
in the second case, respectively by




1
0
0
...
0
1


 and




0
0
0
...
1
0


 in the first case.

Let E, E′ be two unimodular rank-2 sublattices of Λ of same parity and discriminant. By Corollaries
6.7 (definite case) and 6.6 (indefinite case) E and E′ are isometric. With Corollary 6.3 we proved that
E and E⊥ are orthogonal complementary; the same is true for E′ and E′⊥. From Corrollary 6.2 follows
that E⊥ and E′⊥ are unimodular. In the signature (2, 1) case the orthogonal complements have rank 1
and the same discriminant +1. Therefore they are isometric. In the other cases they are indefinite, have
odd rank and the same signature by our assumptions. Applying Landherr’s theorem, the Propositions
6.4 and 6.5 again, we see that E⊥ and E′⊥ are isometric again. We know also that

E ⊕ E⊥ = Λ = E′ ⊕ E′⊥,

see Corollary 6.3. The isometries from E onto E′ and from E⊥ onto E′⊥ can be composed to an
automorphism of Λ showing that E and E′ belong to the same Γ̃ -class.

¤

Let Λ ∼= Or be an indefinite unimodular lattice of odd rank r as in the above theorem. For two
unimodular rank-2 sublattices E, E′ of Λ of same discriminant and parity we denote by Isom(E, E′)
set of isometries of E onto E′ and set

Γ′(E, E′) = {γ ∈ Γ′; γ(E) = E′}.

Corollary 6.9 Under the conditions of the theorem the restriction maps

Γ̃(E, E′) −→ Isom(E, E′) , Γ(E, E′) −→ Isom(E,E′)

are surjective. The isometry class ClΛ(E) of sublattices of Λ containing E, the Γ̃-class Γ̃ · {E} and the
Γ-class Γ · {E} coincide.

Proof. For the first map the surjectivity has already been proved. For the second we remark that
Γ̃ = O∗ · Γ because r is odd. The last statement follows immediately.

¤

Now come back to the Picard modular group Γ = SU((2, 1),O), the special automorphism group of
the standard unimodular lattice Λ = O3 of signature (2, 1), and its congruence subgroup Γ(π).

Proposition 6.10 There are precisely three Γ-classes of unimodular rank-2 sublattices E of Λ com-
pletely represented by lattices with Gram matrices ( 1 0

0 1 ) (definit),
(

1 0
0 −1

)
(indefinit, odd) or ( 0 1

1 0 ) (even),
respectively. The Γ-class splits into three Γ(π)-classes if and only if E is not even. In the even case we
have only one class Γ(π) · {E} = Γ · {E}.
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Proof. The first statement follows from Theorem 6.8 together with the most obvious realizations by
the Λ-orthogonal complements (0, 0, 1)⊥, (1, 0, 0)⊥ or (1, 1, 1)⊥, respectively. It follows that

6.11 all non-even unimodular rank-2 sublattices of O3 have an orthogonal basis.

Remember that Γ/Γ(π) ∼= S3
∼= O(3,F2) and that there is a sectional subgroup in Γ also denoted by S3,

see Lemma 5.2. The lattice E defines a residue subplane E = E/πE ⊂ Λ/πΛ = F3
2 endowed with the

standard non-degenerate quadratic form defined also as residue form of the hermitian form on Λ. The
residue maps E → E are compatible with discriminants and parity. There are precisely two S3-orbits
of non-degenerate subplanes of V = F3

2, namely

(31) {E1,E2,E3} = S3 · {E1},E1 = (1, 0, 0)⊥ (inV)

consisting of all odd planes and the even plane E0 = (1, 1, 1)⊥. Let Ei ⊂ Λ be three definite or three
odd unimodular rank-2 lattices with residue planes Ei, i = 1, 2, 3, respectively. They belong to different
Γ(π)-classes because Γ(π) acts trivially on F3

2. Now let, for instance, τ = (2, 3) ∈ S3 ⊂ Γ be the
transposition sending E2 to E3 and E1 to itself. Set E = E1,E = E1, E′ = τ(E), E⊥ = Oa and
E′⊥ = Oa′. Then we have a ≡ a′modπ. Choose an orthogonal base (b, c) of E such that b2 = 1, hence
c2 = d(E) = ±1. Then τ(b), τ(c) is an orthogonal basis of E′. If b ≡ τ(b)modπ, and (consequently)
c ≡ τ(c)mod π we set b′ = τ(b), c′ = τ(c). The correspondence (a, b, c) 7→ (a′, b′, c′) extends to an
automorphism γ of Λ which descends to the identical map on the residue space V. Therefore γ belongs
to Γ̃(π) sending E to E′. A multiplicative modification by a power of diag(i, i, i) yields an element of
Γ(π) with the same quality. Therefore E and E′ belong to the same Γ(π)-class. We have to modify
the proof, if τ(b) ≡ c and τ(c) ≡ b modπ. Then we change to the orthogonal bases (b′, c′) = (c, b) or
(πb + c, b + π̄c) in the definite or indefinite case, respectively, preserving the Gram matrix. Now the
same argument works. In the even case S3 acts effectively on the set of bases of E = E0. Forgetting the
order of base vectors we have only 3, say B1, B2, B3. Each of them has the symmetric Gram matrix
( 0 1

1 0 ). Now we can repeat the same base transposition argument starting with any τ ∈ S3 of order 2. It
has to preserve one of the basis, B1 say, up to the order. The rest is clear.

¤

At the end of this section we draw a representative plane picture of projective images of unimodular
rank-2 lattices Ei representing Ei, i = 0, 1, 2, 3. We distinguish for i = 1, 2, 3 definite and indefinite
representatives by upper index + or −, respectively. By Proposition 6.10 we have a complete system of
representatives E0, E

+
1 , E+

2 , E+
3 , E−

1 , E−
2 , E−

3 of Γ(π)-classes. For the rest of this section we denote the
subplanes R ⊗ E±

i of the canonical hermitian signature (2,1) space C3 by E±
i and the projective lines

PE±
i ⊂ P2 = P2(C) by L±i . The orthogonal complements of a =

(
0
0
1

)
, b =

(
1
0
0

)
, c =

(
0
1
0

)
, e =

(−1
1
1

)

in C3 yield the special representatives E−
1 = a⊥, E−

2 = c⊥, E+
3 = a⊥ and E0 = e⊥. Using projective

coordinates (x : y : z) the corresponding lines are described by linear equations:

L0 : X − Y + Z = 0, L−1 : Y = 0, L−2 : X = 0,
L+

3 = L∞ : Z = 0 (the infinite line)
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Figure10.
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on the (real) projective plane where the (real) ball points ly inside of the (unit) circle, the Γ-cusps sit on
the circle. All intersection points of the lines are real, hence all visible in the real picture. Restricting
to B we forget L+

3 and the marked points. Then we get for the remaining lines and points the dual
unweighted graph
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Applying S3 ⊂ Γ (the alternating subgroup A3 ⊂ S3 is sufficient) we get similar graphs including
also L−3 = PE−

3 . Alltogether we get the

Γ(π)-graph of indefinite unimodular rank-2 lattices
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In the next section we determine positive wights as reflection orders, calculate (negative) heights as
Euler-Poincare volumes of fundamental domains in discs Di, i = 1, 2, 3, cutten out as intersections of
L−i with the ball B.
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7 Elements of finite order

Let K be a number field, O = OK its ring of integers, Γ a subgroup of Glm(O), a ⊂ O an ideal and
Γ(a) ⊆ Γ the corresponding congruent subgroup defined as kernel of the natural group homomorphism

Γ −→ Glm(O) −→ Glm(O/a).

Lemma 7.1 If γn = 1 for γ ∈ Γ(a), Then a divides ζ − 1 in OL, L = K(ζ), where ζ is an arbitrary
eigenvalue of γ (a suitable n-th unit root).

Proof. For any ζ-eigenvector x =
(

x1
...
xm

)
∈ K(ζ)m of g the (fractional) ideal

I(x) := OLx1 + ... + OLxm

and the ideal class cl(x) := cl(I(x)) in the ideal class group PicOL of L are well-defined. Choose an
integral ideal q ∈ cl(x) such that (q, a) = 1 in OL. Since

q = (λ)I(x) = I(λx)

we can assume that q = I(x), hence xi ∈ q ⊂ OL. By assumption, a divides (each coefficient of ) γ −E,
E the unit matrix of order m. This implies

a | (γ − E)x = (ζ − 1)x, a | (ζ − 1)I(x) = (ζ − 1)q

and finally a | (ζ − 1) in OL.

¤

Corollary 7.2 In the special case of the field K = Q(i) of Gauß numbers there are at most two possi-
bilities for non-trivial ideals a ⊂ O such that Γ(a) contains non-trivial elements of finite order, namely
a = (π) = (1 + i) or a = (2). The only orders of such elements are 2 and 4. Elements of order 4 belong
to Γ(π) \ Γ(2). Especially, Γ(π3) is a torsion free group.

Proof. Let n =
∏

p
kj

j , pj natural primes, be the order of 1 6= γ ∈ Γ(a). Then γ has a primitive n-th
unit root ζ = ζn as eigenvalue. The degrees of the minimal polynom Φn(X) of ζ over Q and of the field
extension L = Q(ζ)/Q coincide with the Euler product φ(n) =

∏
(pj − 1)pkj−1

j . Since Φn(X) divides
Xn−1 + Xn−2 + ... + X + 1 in Z[X] and a | (ζ − 1) it follows that

NK/Q(a)φ(n)/2 = NL/Q(a) |NL/Q(1− ζ) = Φ(1) |n.

This is not possible for an odd prime p = n > 3 because in this case the exponent φ(n)/2 is greater
than 1. Also p = 3 is excluded because N(a) | 3 can only realized by a = O in the ring auf integral Gauß
numbers. Therefore only elements γ of 2-power order n = 2k occur. The norm 1 < a = NK/Q(a) has to
satisfy a2k−1 | 2k > 1, hence a = 2, 2k−1 ≤ k which is only possible for k = 1 or 2, n = 2 or 4. In both
cases we have a | 1− ζ = 2 or 1− i, respectively.

¤

We concentrate our further considerations to subgroups of Γ̃ = U((2, 1), O), O = OK , K =
Q(i), especially to Γ = SΓ̃, again. Elements of order 4 in Γ belong to the Gl3(K)-conjugation
classes of diag(1, i,−i), diag(−1, i, i) or diag(−1,−i,−i), and elements of order two are conjugated
to diag(1,−1,−1). The conjugacy classes of the latter three types exhaust the set of all semisimple
elements 1 6= σ ∈ Γ with a double eigenvalue. This follows easily from the fact that the characteristic
polynomials χγ(T ) have to ly in O[T ]. Semisimple elements in Γ̃ with precisely two eigenvalues are
called Λ-reflections. The reflection lattice E(σ) ⊂ Λ is defined to be the intersection of Λ = O3 with
the eigenspace of the double eigenvalue of σ. Obviously, it has O-rank 2.

Proposition 7.3 For each Λ-reflection σ ∈ Γ(π) is the reflection lattice E(σ) unimodular.
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Proof. We can assume that the eigenvalues of σ are 1,−1,−1. Otherwise σ has order 4 by Corollary 7.2
and we can take σ2 because E(σ) = E(σ2). Let a ∈ Λ and (b, c) be an O-base of E⊥ or E, respectively.
On K3 the reflection σ acts by the correspondence

u = xa + yb + zc 7→ σ(u) = xa− yb− zc, x, y, z ∈ K.

−σ(u) = u− 2xa = u− 2
< u, a >

< a, a >
a.

Since a is primitive, we find vectors u ∈ O3 such that < u, a > = 1. The image σ(u) has to be integral,
therefore

a2 =< a, a > divides 2.

Assume that a2 is not a unit, that means a2 = ±2. The −σ-images of the canonical basis vectors ei,
i = 1, 2, 3, of O3 are ei ± āia, where ai is the i- th coordinate of a. Now we see that σ does not induce
the identical map on O3/πO3. Namely, ei ≡ σ(ei)modπ implies āia ≡ 0 modπ, hence |ai|2 ≡ 0 modπ,
which is not possible for i = 1, 2, 3, because a is primitive. So we proved that a2 is a unit which means
that Oa is unimodular. Corollary 6.2 implies the unimodularity of E.

¤

For Γ′ ⊆ Γ̃ and any pair of orthogonal complementary sublattices Oa⊥E of Λ we have a pair of
restriction homomorphisms

AutE ←− Γ′(E, E) −→ Aut Oa

For unimodular E and Γ′ = Γ̃ one gets a pair of cartesian projections

AutE ←− Γ̃(E, E) = Γ̃(Oa, Oa) ∼= Aut E ×Aut Oa −→ Aut Oa ∼= O∗,

where the surjectivity on the left-hand side comes from Corollary 6.9 and the identity from Corollary
6.3. Restricting to Γ we get an exact sequence

1 −→ SAutE −→ Γ(E,E) = Γ(Oa,Oa) −→ Aut Oa ∼= O∗ −→ 1,
‖

AutE

where the vertical isomorphism sends ρ to ρ × detρ. It restricts via intersections with Γ(π) to the
obviously splitting exact sequence

(32)
1 −→ (SAutE)(π) −→ Γ(π)(E, E) = Γ(π)(Oa, Oa) −→ Aut Oa ∼= O∗ −→ 1,

‖
(AutE)(π)

Lemma 7.4 Each maximal finite subgroup G of (SAut E)(π) is cyclic of order 4.

Proof. G has only elements of order dividing 4 by Corollary 7.2. Consider G as subgroup of Sl2(C) =
Sl(R⊗E). It acts on the projective line P1(C). If G is not abelian, then it must be a binary dieder group
2D2 (quaternion group) or 2D4 because of the orders of elements of G, see e.g. [Bri]. 2Dn, Dn the dieder
group of order 2n, is represented by the subgroup of Sl2(C) generated by σ =

(
0 1
−1 0

)
and diag(ζ2n, ζ−1

2n ).
Therefore only 2D2 survives. There is a canonical Sl2(O)- representation with generators

i = diag(i,−i), j = ( 0 i
i 0 ) k = −i · j =

(
0 1
−1 0

)
.

Let σ1,σ2,σ3 be the corresponding elements of G ⊂ Sl(E). The product 1 6= τ = −i ·σ1 has order 2. We
choose primitive (orthogonal) eigenvectors a, b ∈ E of τ . By Proposition 6.10 there exist an O-base of
E with Gram matrix diag(1, 1), diag(1,−1) or ( 0 1

1 0 ). We can now repeat the arguments of Proposition
7.3 to show that a2 and b2 have to be units. This kills already the third case of even lattice. The
contradiction comes from the existence of such a reflection. Therefore G 6∼= 2D2 in the even case. In the
odd cases we see that a, b is an O-base of E sent to ia or −ib by σ1, respectively. We work with matrix
representations with respect to this base,

M(σ1) =
(

i 0
0 −i

)
and M(σ2) =

(
a b
c d

)
,
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say. From σ1σ2 = −σ2σ1 follows that a = b = 0. Therefore we get the canonical representation.
Descending to residue classes modulo π it is clear now that G acts not trivially on E/πE. Therefore
G is not contained in the congruence subgroup (SAutE)(π) in contradiction to our assumption. We
proved that G is an abelian group. The abelian groups in Sl2(C) are cyclic. The central subgroup of
(SAutE)(π) generated by −id is obviously not maximal.

¤

Theorem 7.5 (i) Each maximal finite subgroup T of Γ(π) is isomorphic to O∗ ×O∗.

(ii) The set of all these groups coincides with the set of intersections

Γ(π)(E,E) ∩ Γ(π)(E′, E′) = Γ(π)(Oc) ∩ Γ(π)(Ob),

where E = Λc and E′ = Λb are two different unimodular rank-2 sublattices of Λ with orthogonal
vectors b, c of hermitian norms ±1.

(iii) Each element δ ∈ Γ(π) of order 2 is a square of a reflection ρ ∈ Γ(π) of order 4.

(iv) Each element γ ∈ Γ(π) of finite order is a reflection or a product of two reflections.

(v) A non-trivial element of finite order of Γ(π) has order 2 if and only if it belongs to Γ(π2) = Γ(2).
It has order 4 if and only if it belongs to Γ(π) \ Γ(π2).

Proof. First we prove that T is commutative. Assuming the opposite we find two non-commuting
elements σ, τ ∈ T . Changing, if necessary to −σ or −τ , we assume that σ and τ have the simple
eigenvalue +1, see the preparations of 7.3. Let a, b ∈ Λ be corresponding (primitive) eigenvectors of
σ, τ , respectively. If σ has order 4, then σ2 is a reflection. Therefore Λa and for the same reason also Λb

is a reflection lattice which has to be unimodular by Proposition 7.3. If they coincide, then Oa = Ob.
We can restrict the exact sequence (32) applied to E = Λa = Λb to the finite subgroup < σ, τ > of
Γ(π)(a) to get a splitting exact finite group sequence

1 −→ R −→ O∗· < σ, τ >−→ O∗ ∼= Aut Oa −→ 1

By Lemma 7.4 the subgroup R is cyclic (of order 1, 2 or 4). Therefore the middle group is abelian in
contradiction to our assumption. It follows that Λa 6= Λb. The intersection of both is generated by a
common (primitive) eigenvector e ∈ Λ of σ and τ . There is an element ρ of order 2 in < σ, τ > such
that ρ(e) = e. For instance, take ρ = σ2τ2, if σ and τ have order 4. Then ρ 6= id because otherwise
σ2 = σ−2 = τ2, hence a = b (up to a unit factor) by the above choice. With E = Λe we found again an
unimodular reflection lattice with < σ, τ >⊂ Γ(π)(E, E). Repeating the above argument, we see that
σ and τ commute. Therefore T is a (maximal) abelian subgroup of Γ(π).

T has a simultaneous (primitive) eigenbase a, b, c ∈ Λ. We can choose via elements of order 2 one of
these eigenvectors, c say, such that E = Λc is a unimodular reflection lattice, T ⊂ Γ(π)(E,E). We get
from (32) the splitting exact sequence

1 −→ S −→ T −→ O∗ = Aut Oc

of finite abelian groups, S a subgroup of O∗ by Lemma 7.4. Working with matrix representations with
respect to a, b, c we see that at least the reflection group < diag(i, i,−1) > is a subgroup of T . This
cyclic group cannot exhaust T because it is not maximal and Aut E has non-trivial elements diag(µ, ν),
µ, ν ∈ O∗, with respect to any O-base of E, which can be easily extended to elements of Γ(π) via Oc.
So T must be a product of two cyclic groups, Take a subgroup < diag(i, i,−1) > × < δ > of T with δ
of order 2. then E(δ) is a unimodular reflection latticeΛ′b. The eigenvectors b′ and c of δ are orthogonal
because they belong to the different eigenvalues +1 or −1 of δ, respectively. Therefore diag(i, i, 1) acts
by i-multiplication on Ob′ ⊂ E = Λc, hence the vectors b′ and c are common eigenvectors of T . By
Corollary 6.2 we know that b′2, c2 ∈ {±1}. So Ob′ + Oc and its Λ-orthogonal complement Oa′ are
unimodular, and T acts on Oa′, too. So we can assume that a = a′, b = b′, c. These vectors form an
O- base of Λ because their Gram matrix is diagonal with O∗- coefficients. Via O-linear extension to Λ
of three independent O∗-actions on the base vectors we get with obvious notation and identification

T ⊂ Sdiag(O∗, O∗, O∗) = O∗2 ⊂ T,
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because T is maximal, hence T ∼= O∗×O∗. We proved (i) and (ii). (iii) follows immediately because we
can extend each subgroup < δ >⊂ Γ(π) of order 2 into a maximal one T which allows us to work with
diagonal representations with respect to an orthogonal basis of Λ: δ = diag(1,−1,−1) = diag(−1, i, i)2.
(iv) Embed γ again into a maximal finite T as above. If γ is not a reflection, then it has diagonal
representation diag(1, i,−i) = diag(i,−1, i) · diag(−i− i,−1). (v) It is now also clear that δ belongs to
Γ(2). For the elements of order 4 we refer to Corollary 7.2.

¤
Notation. ER := R⊗ E for each O-lattice E.

Definition-Remark 7.6 We call a Λ-reflection δ a B- reflection, iff L(δ) := PER(δ) intersects B. We
denote the corresponding (complete linear) subdisc D(δ) = L(δ) ∩ B or by Da, where a ∈ C3 is an
arbitrary non-trivial vector orthogonal to E. δ is a B-reflection if and only if a2 > 0 or, equivalently,
E(δ) is indefinite.

Corollary 7.7 Any three different projective lines

Lj = PEjR ⊂ P2 = P(ΛR)

of unimodular rank-2 sublattices of Λ have no common intersection point Q on B.

Proof. Let Q = Pq, o 6= q ∈ Λ, be a common intersection point. Then q is a common eigenvector of
reflections σj ∈ Γ(π) with reflection lattice Ej . The group G =< σ1, σ2, σ3 > is a subgroup of

Γ(π)(Λq, Λq) = Γ(π)(Oq, Oq).

Since q2 < 0 the lattice Λq is positive definite. Therefore G is a finite group, see (32) or a sequence
before. It follows from the theorem that G is abelian. Therefore the elements of G has three simultaneous
eigenvectors, one of them is q. The projected finite abelian group PG has a faithful representation on
the tangent space TQ(P2) with only two eigenlines there. But Lj is an eigenline of Pσj for j = 1, 2, 3.
This is a contradiction.

¤

Proposition 7.8 The surface B/Γ(π) is smooth. There are precisely three Γ(π)-orbits of Γ(π)-elliptic
points on B. Its union is the Γ-orbit of O = (0 : 0 : 1) ∈ B consisting of all q ∈ Λ with q2 = −1. Each
subgroup Σ ∼= S3 of Γ acts transitively as permutation group on the three orbits via conjugation. The
isotropy group Γ(π)Q of each Γ(π)- elliptic point Q is the product of two cyclic groups each generated
by a reflection of order 4. Oq is the intersection of the corresponding reflection lattices E and E′. Both
are unimodular, indefinite and odd.

Proof. We have to show that each stationary group Γ(π)Q of a Γ(π)-elliptic points Q ∈ B, is generated
by B- reflections of Γ(π)Q, see [H98]. Γ(π)Q is a finite subgroup containing an element γ which is not a
reflection, by the definition of elliptic points. This means that Q is an isolated fixed point of γ. Then
γ has order 4 and Q = Pq for a primitive eigenvector q ∈ Λ of γ. Since γ has only simple eigenvalues
1, i,−i, it has precisely three eigenlines in K3. Extend γ to a maximal (abelian) subgroup T of Γ(π).
Then γ is a product of two reflections σ, τ ∈ T by the proof of (iv). The three eigenlines of T must be
the same as those for γ. Therefore σ and τ belong to Γ(π)Q and both are B-reflections. Moreover, q is
a common eigenvector of T , hence O∗ ×O∗ ∼= T ⊂ Γ(π)Q. The inclusion is the identical map because
of the maximality of T .

T acts on the orthogonal complement E = E(Q) = Λq of qinΛ. It is a Λ-reflection lattice because
E = E(γ2) and γ2 is a Λ-reflection because its order is 2. By Proposition 7.3 E is unimodular and also
Oq is by Corollary 6.2. Therefore q2 = −1, because Q = Pq belongs to B, hence q2 must be negative.
Thus E is a definite odd unimodular sublattice of Λ. The last conclusion is correct for each q ∈ Λ with
q2 = −1. The set

S = {Oq; q ∈ Λ, q2 = −1}
and the set of all unimodular definite odd rank-2 sublattices E of Λ correspond bijectively to each other
via orthogonality. The latter set is the Γ- orbit of one of its members by Proposition 6.10. Therefore
the former set is the Γ-orbit of one element, hence PS = Γ · O. We get on this way also precisely
one Γ-conjugacy class of stabilizer groups ΓQ of Γ(π)-elliptic points Q. They split into three different
Γ(π)-classes by the second part of Proposition 6.10. ¤
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Corollary 7.9 Each q ∈ Λ with hermitian norm q2 = −1 extends uniquely, up to O∗-factors and order
of numeration, to an orthogonal basis (a1, a2, q) of Λ. The both unique unimodular (indefinite odd)
rank-2 sublattices of Λ with intersection Oq are the reflection planes

(33) E1 = Λa1 = Oa2 + Oq, E2 = Λa1 = Oa1 + Oq,

Moreover, we set
E3 := Λq = Oa1 + Oa2.

The set of residue planes of the lattices Ej, j = 1, 2, 3, coincides with the set of the three unimodular odd
subplanes in F3

2 = Λ/πΛ, explicitly described in (31) (with possibly other numeration). Two −1-vectors
q, q′ belong to the same Γ(π)-orbit if and only if q ≡ q′modπ.

Proof. Define E1, E2 as the unique pair of Γ(π)-reflection lattice containing q. Their existence has been
proved above (as E(σ), E(τ)). The uniqueness comes from Corollary 7.7. Choose an orthogonal base
a1, a2 of the definite unimodular lattice Λq. Then (a1, a2, q) is an orthogonal base of Λ. It holds that
a2
1 = a2

2 = 1, Oq = Λa1 ∩ Λa2 with unimodular Λa1 , Λa2 . These lattices must coincide with E1, E2 but
also with the unimodular sum lattices in (33). It is clear that Ej/πEj is a unimodular odd subplane of
F3

2. It is easy to see that if Ej ≡ Ek modπ, then El/πEl must be a line in F3
2 for {j, k, l} = {1, 2, 3}, which

is not possible. S3 ⊂ Γ acts transitively on the set of unimodular odd subplanes {E1,E2,E3} permuting
indices. Therefore Γ acts transitively on them, hence on the set of their orthogonal complements in
F3

2 represented for instance by the −1-vectors (1, 0, π), (0, 1, π), (0, 0, 1) ∈ Λ. These vectors represent
different Γ(π)-orbits and all of them by the proposition. The last statement follows immediately.

¤

Proposition 7.10 The irreducible components of the branch locus of the quotient map B −→ B/Γ(π)
are smooth. It consists of 4 curves

(34) C0 = D0/Γ0, C1 = D1/Γ1, C2 = D2/Γ2, C3 = D3/Γ3,

where Dj = B∩Lj, Lj = P(EjR), Ej an arbitrary unimodular indefinite rank-2 sublattice of Λ with (non-
degenerate) residue subplane Ej of F3

2 with the notations of (31) and Γj = Γ(π)(Ej , Ej), j = 0, 1, 2, 3,
respectively. The ramification index is 4 for all four components. The action of S3 = Γ/Γ(π) on B/Γ(π)
permutes the curves C1, C2, C3 and restricts to an effective action on C0. Ck intersects Cl in precisely
one point Pm for any triple {k, l, m} = {1, 2, 3}. The intersection is transversal. The points P1, P2, P3

are the images of all Γ(π)-elliptic points on B. The B-reflection discs D1,D2,D3 do not intersect D0.

Proof. The branch locus comes from reflection discs and elliptic points, see [H98], IV, Corollary 4.6.3.
Each elliptic points Q is the intersection point of precisely two reflection discs, see 7.7, 7.8, say of
D = PER, D′ = PE′

R. The unimodular reflection lattices E, E′ ⊂ Λ project onto different residue
subplanes E1,E2, say, of F3

2 by Corollary 7.9. With this observation the S3-action on the branch
components is clarified. Now let R be an arbitrary point of D = PER. We prove that R cannot be a
honest Γ(π)-cross point of D. This means, by definition, that

{Γ(π)R}D = Γ(π)R ∩ D = Γ(π)(D,D)R

with

Γ(π)(D,D) := Γ(π)(E;E).

We start with D = D1. If R is not elliptic, then also γ(R) is not for each γ ∈ Γ(π). Therefore γ(D) is the
only Γ(π)-reflection disc throug γ(R). Especially D is the only reflection disc through γ(R), if γ(R) ∈ D,
hence γ(D) = D, γ ∈ Γ(π)(D,D). If R = Q ∈ D is elliptic, {Q} = D1∩D2 with the above notations, then
γ(D1) and γ(D2) are the only reflection discs through γ(Q) for γ ∈ Γ(π). Observe that corresponding
planes E1 and E2 are preserved and not transposed because γ acts trivially on F3

2. If γ(Q) ∈ D = D1,
then γ(D) 6= D2, hence γ(D) = D1 = D, γ ∈ Γ(π)(D,D). From the abscence of honest Γ(π)-cross points
on D it follows that the quotient curve C = D/Γ(π)(D,D) is smooth, see [H98], IV, Proposition 4.4.6.
For D = D0 we know that each R ∈ D is not an elliptic point because elliptic points are intersections of
two discs coming from odd lattices by Proposition 7.8, but E0 is even and intersection points of three
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reflection discs do not exist on B by Corollary 7.7. Now the the same argument for non-elliptic points
on D1 works.
D0 cannot intersect D1 because an intersection point Q ∈ B would be an elliptic point as intersection

point of two reflection lines L0, L1. But then Q is also an intersection point of two lines coming from
unimodular odd lattices, hence of three reflection lines, which is not possible by Corollary 7.7 again.

¤

Proposition 7.11 Each Γ-cusp κ = Pk, k ∈ Λ a primitive isotropy vector, is the intersection of precisely
two Γ(π)-reflection lines L0, L1. Both come from unimodular indefinite lattices E0, E1, where the first
one is even and the other odd. Each unimodular even (hence indefinite) lattice E0 contains isotropy
vectors k1, k2, k3 representing all the possible non- trivial residue isotropy vectors

(
0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)
∈ F3

2.

They can be choosed as A3-orbit of k1, where A3 is the alternating subgroup of a group (isomorphic to and
identified with) S3 ⊂ Γ(E0, E0) acting on E such that the corresponding reflection lines L1, L2, L3 6= L0

through κ1, κ2 or κ3, respectively, intersect each other pairwise on B. These three elliptic intersection
points represent the three Γ(π)-orbits of all Γ(π)-elliptic points.

Proof. If L0, L1 through κ exist they must be unique by Corollary 7.7. Since the Γ-cusps form only one
Γ-orbit as already mentioned above, it suffices to check the situation at one cusp. This has been already
done in the graphic 10, where κ1 = (0 : 1 : 1) appears as intersection of L0 and L−1 . The application of
Γ ⊃ S3 shows that the cusps κj of the residue class with corresponding index is the intersection of two
reflection lines of type L0 and Lj . Now we show that we can choose an S3 in Γ(E0, E0). Remember that
we can find an O-base of E0 = Λc with Gram matrix ( 0 1

1 0 ) and c2 = 1. Using matrix representations
with respect to this base it is easy to check that

(
0 i
i −1

)
and

(
0 1
−1 0

)
generate a subgroup of SAut(E0)

isomorphic to S3, where the first element generates A3. Sending c to c it extends to a subgroup S3

of Γ(E0, E0) depending on the chosen base. The last statement can be checked by example. We refer
to picture 10 again, with lines L1, L2 meeting L0 in cusps κ1 or κ2, respectively. The corresponding
isotropy vectors k1 = (0, 1, 1), k2 = (1, 0,−1) have Gram matrix ( 0 1

1 0 ). The above generator of the
correspnding subgroup A3 sends k1 to ik2, hence κ1 to κ2, L1 to L2, L2 to a reflection line L3 and the
intersection point O3 = O ∈ B of L1, L2 to an intersection point O1 ∈ B of L2 and L3.

¤

Remark 7.12 Restricting to reflection discs Dj = Lj ∩ B we realized the situation described in Figure
8.

Proof of Theorem 4.2. It remains to check the properties (ii),...,(vii) postulated in 4.1 For Γ′ = Γ(π).

(ii) Let κ1, κ2, κ3 ∈ ∂KD0 be an S3-orbit for S3 ⊂ Γ0 = Γ(E0, E0), see 7.11, and κ ∈ ∂KD0 arbitrary.
We have to show that κ ∈ Γ′0κj . Assume, for instance, that κ ≡ κ1 modπ. Then κ = L0 ∩ L′1, hence
κ = γκ1 for a suitable γ ∈ Γ with κ1 = L0 ∩ L1. Since pairs of reflection lines through one point are
unique, γ acts on L0 and transferes L1 to L′1. Therefore γ or γ ◦ (2, 3) sends Lj to L′j , j = 2, 3. This
property can be assumed now for our γ. Then γ ≡ E modπ which means that γ belongs to Γ′.

(iii) Take D1 = B∩L1 described in 7.11. Then κ1 = L1∩L0 ∈ ∂KD1 is fixed by (2, 3) ∈ S3 ⊂ Γ(E0, E0).
For arbitrary κ ∈ ∂KD0 take γ ∈ Γ such that κ = γκ1. By the same argument as above, γ acts on
L1 and sends L0, L2 to L′0 or L′2, respectively (if not take γ◦(2, 3)). It follows again that γ belongs to Γ′1.

(iv) see Proposition 6.10.

(v) see Propositin 7.8.

(vi) The proof of the following theorem is completely published in [H98].
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Theorem 7.13 ([H98], V, Theorem 5A.4.7). Let K be an imaginary quadratic number field with
ring of integers OK , discriminant D = DK/Q 6= −3, Dirichlet character χ(n) = (D

n ) (generalized

quadratic residue, Jacobi symbol) and corresponding Dirichlet series L(s, χ) =
∞∑

n=1
χ(n)n−s. Then for

Γ = SU((2, 1),OK) with fundamental domain FΓ on B it holds that

volEB(Γ) =
3|D|5/2

32π3
L(3, χ).

It is now easy to calculate for K = Q(i) the FΓ-volume 1
32 in the case of Gauß numbers. This was

first proved by Shvartsman [Sv1]. Since Γ/Γ(π) ∼= S3 it follows that volEB(Γ(π)) = 3
16 .

(vii) see Proposition 7.11.

Theorem 4.2 is proved.

¤

36



8 The binary octehedron group and moduli of curves of Shimura
equation type

We look for the structure of factor groups of the group tower

Γ(π4) ⊂ Γ(π3) ⊂ Γ(π2) ⊂ Γ(π) ⊂ Γ = SU((2, 1), O), O = Z+ Zi.

Until now we know only the structure S3 of the top factor group.

Theorem 8.1 The congruence subgroup Γ(π) is generated by reflections of order 4.

We need

Theorem 8.2 (Armstrong [Arm]). Let G be a group acting homeomorphically and proper disconti-
neously on a local compact, linearly and simply-connected metric space X and S the normal subgroup of
G generated by the elements of G fixing at least one point of X. Then the fundamental group π1(X/G)
of the quotient space X/G is isomorphic to the factor group G/S.

¤

Proof of Theorem 8.1. We apply Armstrong’s theorem to X = B, G = Γ(π). By 5.1 the Baily-Borel
compactification B/Γ(π) is the projective plane. Therefore the fundamental group π1(B/Γ(π) is trivial.
According to 8.1 the group Γ(π) is generated by all its elements of finite order. Since each element of
finite order is a product of (at most two) reflections by Theorem 7.5 (iv), the group Γ(π) is generated
by reflections. The only orders of Γ(π)-reflections are 2 and 4, see Corollary 7.2. But each reflection of
order 2 is a square of a reflection of order 4 by 7.5 (iii).

¤

Let Z2
∼= (Z/2Z, +) = (F2, +) be the cyclic group of order 2. First we show that

(35) Γ(πm)/Γ(πm+2) ∼= Zs
2 with 2s = [Γ(πm) : Γ(πm+2)] for m ≥ 2.

Namely, each element of this factor group has order 2 because

(E + πmA)2 = E + 2πmA + π2mA2 ≡ E mod πm+2,

A ∈ Mat2(O), E the unit matrix. Two elements s, t of a group G whose non-trivial elements have all
order 2 commute because stst = (st)2 = 1, s−1 = s, t−1 = t, hence ts = st. So each group of this type
is abelian. If it is finite, it must be isomorphic to a power of the additive group of F2. Now (35) follows
immediately via comparison of order. By a similar argument we get

(36) Γ(πm)/Γ(πm+1) ∼= Zr
2 with 2r = [Γ(πm) : Γ(πm+1)] for m ≥ 1.

Now let 2O be the binary octaeder group defined via central Z2-extension

0 −→ Z2 −→ 2O −→ S4
∼= O −→ 1.

Geometrically, S4 can be represented as motion group O ⊂ O(3,R) of the (regular) octahedron or cube.
There is a canonical group homomorphism SU(2,C) −→ O(3,R) with central kernel {±1} ∼= Z2, see e.g.
[Hal]. It represents 2O as preimage of O.

Proposition 8.3

(i) [Γ(π) : Γ(π2)] = 23, hence Γ(π)/Γ(π2) ∼= Z2 × Z2 × Z2;

(ii) Γ/Γ(π2) is isomorphic to the binary octaeder group 2O.
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Proof. Let Oπ be the π-adic completion of O and Γπ = SU((2, 1), Oπ) ⊃ Γ. It is well-defined because
the complex conjugation a 7→ ā on O extends to Oπ. We develop each element of A ∈ Mat3(Oπ)
componentwise in a π-adic series

(37) A = A0 + πA1 + π2A2 + π3A3 + ..., Ai ∈ Mat3(F2)

identifying F2 with the representatives 0, 1 of F2 = O/πO. The congruence subgroups Γ(πk) are
canonically embedded into the π-adic congruence subgroups Γπ(πk), their π-adic completions, for all
k ∈ N. Since Γ(πk) = Γ ∩ Γπ(πk) we have also canonical embeddings

(38) Γ/Γ(πk) ⊆ Γπ/Γπ(πk) ⊆ SU((2, 1),O/Oπ) ⊂ Sl3(O/Oπ).

For A ∈ Γ the correspondences A 7→ A0 defines a group homomorphism

(39) Γ/Γ(π) ∼−→ S3
∼= O(3,F2),

and A 7→ A1 an injective group homomorphism

(40) c1 : Γ(π)/Γ(π)2 −→ Mat3(F2)0 = {M ∈ Mat3(F2); TrM = 0} ∼= F8
2.

The image is a linear code C = C1 in the non-degenerate space F8
2 endowed with the F2-bilinear form

defined by the traces of products of two elements, which is non-degenerate on Mat3(F2)0. C is contained
in the 5-dimensional subspace Symm3(F2)0 of symmetric matrices with zero trace. This follows from the
relations t(E +πA1 + ...)Φ(E + π̄A1 + ...) = Φ with Φ = diag(1, 1,−1) implying tA1 = A1. The diagonal
matrices with zero trace belong to C because τ1 = diag(−1, i, i), τ2 = diag(i,−1, i), τ3 = diag(i, i,−1)
belong to Γ(π). Therefore C is at least 2-dimensional. Moreover,

(
0 1 1
1 0 1
1 1 0

)
∈ C. This is A1 = A1(τ0)

of a reflection τ0 of Γ(π) with unimodular reflection lattice E0 = Λc of even type, for instance take

c = (1, 1, 1), τ0 =
(

1 1−i −1+i
1−i 1 −1+i
1−i 1−i −1+2i

)
. Denote by

(41) T = F2t0 + F2t1 + F2t2 + F2t3

the 3-dimensional subspace generated by the images of the above reflections τj , j = 0, 1, 2, 3.
The F2-dimension of C cannot be greater than 3. Namely, let c ∈ C be arbitrary. Then it is the

image of a product of reflections of order 4 by Theorem 8.1. It suffices to show that the image of each
4-reflection ρ belongs to T . By the classification of indefinite unimodular O3- sublattices ρ is Γ(π)-
conjugated to one of the τj . Now it is easy to see that ρ and τj have the same image in C, hence C = T .
Together with (36) we proved (i).

The inclusions Γ(π2) ⊂ Γ(π) ⊂ Γ yield the exact sequence

(42) 0 −→ C ∼= Z2 × Z2 × Z2 −→ Γ/Γ(π2) −→ Γ/Γ(π) = S3 −→ 1

We check that the action of S3 on Z2 × Z2 × Z2 via pull-back and conjugation is the same as that of
the exact sequence

0 −→ Z2 ×K4 −→ 2O −→ S3 −→ 1

lifted from
0 −→ K4 −→ S4 −→ S3 −→ 1,

where K4
∼= Z2×Z2 is the normal subgroup of S4 consisting of the elements of order 1 or 2 with positive

signature. These are the products of two tranpositions. S3 acts effectively on K4 and ineffectively on
Z2. Now look back to the code C ∼= Z2 ×K4, where Z2 is identified with F2t0 and K4 with

F2t1 + F2t2 + F2t3 = F2t1 + F2t2.

Each group Σ3 ⊂ Γ isomorphic to S3 permutes the three Γ(π)-orbits of odd unimodular O3-sublattices
of rank 2 represented by the images t1, t2, t3 of their 4-reflections, see Proposition 6.10. Since there
is only one even Γ(π)-orbit of even unimodular O3-sublattices of rank 2, the group S3 acts trivially
on the first factor F2t0. So both S3-actions on Z2 ×K4 coincide, which proves the second part of the
proposition. ¤
Let

γ1 : Γ(π) ³ C1 = Z2 ×K4
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be the lift of the code embedding c1 defined in (40) with the S3- invariant subgroups Z2 = F2t0 and
K4 = F2t1 + F2t2 + F2t3, see (41). The preimage Γ2 := γ1(K4) is a normal subgroup of Γ(π) of index
2. Since K4 is S3 = Γ/Γ(π)-invariant, Γ2 is also a normal subgroup of Γ of index 12. Any embedding
S3 ↪→ Γ defines an embedding S3 ↪→ Γ/Γ2. Therefore the exact sequence

0 −→ Z2 = Γ(π)/Γ2 −→ Γ/Γ2 −→ S3 = Γ/Γ(π) −→ 1

splits, hence Γ/Γ2
∼= Z2 × S3 =: 2S3. The splitting can be realized by finite subgroups of Γ in the

following manner: Let D0 ⊂ B be an Σ3-invariant Γ(π)- reflection disc coming from an even unimodular
rank-2 sublattice of O3, Γ ⊃ Σ3

∼= S3, see Proposition 7.11. The cyclic reflection group 〈τ0〉 of D0 of
order 4 is normalized by Σ3. It defines the finite subgroup 4Σ3 := 〈τ0〉 × Σ3 of Γ of order 24. Since
τ2 ∈ Γ(π2) we get 2S3 as image in the binary octahedron group Γ/Γ(π2).

We want to classify the ball quotient surface Ŷ = B̂/Γ2. It is the double cover of X̂ = P2 branched
precisely along the quadric Ĉ0. The Galois group is realized by 2S3/S3 = Z2 = 〈τ0〉 mod Γ(π2). The
degree formulas for orbital hights applied to the finite orbital double covering f : Ŷ −→ (P2, 2Ĉ0), see
[H98] , compare with (13), (14), yield

(43)

e(Ŷ ) = He(Ŷ ) = 2He(P2, 2Ĉ0)

= 2[e(P2)− (1− 1
2
)e(Ĉ0)] = 2[3− 1

2
· 2] = 4,

τ(Ŷ ) = Hτ (Ŷ ) = 2Hτ (P2, 2Ĉ0)

= 2[τ(P2)− 1
3
(2− 1

2
) · 1

2
(Ĉ2

0 )] = 2[1− 1
2
· 2] = 0.

Now we calculate Euler numbers and selfintersections of irreducible preimage curves D̂i of Ĉi, i =
0, 1, 2, 3, respectively, by the degree formulas for local orbital hights, see [H98], compare with (9),(10).
Since Ĉ0 is the branch locus we get immediately D̂0

∼= Ĉ0
∼= P1. We have to change to the double

covering Y ′ −→ X ′ for getting a locally abelian situation. With the ramification indices v0 = 2,
v = vj = 1, j = 1, 2, 3, of f along D′

j covering C ′j , we get

e(D′
j) = he(D′

j) = [D′
j : C ′j ] · he(C′

j)

= [e(C ′j)− 2(1− 1
v
)] · [D′

j : C ′j ] = 2 · [D′
j : C ′j ],

hence
e(D′

i) = 2, D′
i
∼= P1, [D′

i : C ′i] = 1, i = 0, 1, 2, 3;

(D′2j ) = hτ (D′
j) = [D′

j : C ′j ] · hτ (C′
j) = (C′2j ) = −1, j = 1, 2, 3;

(D′20) = hτ (D′0) = [D′
0 : C ′0] · hτ (C′

0) =
1
2
· (C′20) = −1.

Since f ′ : Y ′ −→ X ′ is not ramified and not inert at D′
j , each of the curves C ′j has precisely two

irreducible preimage curves D+
j and D−

j . Let Fj ⊂ Y ′ denote the preimage of Ej ⊂ X ′. Locally Z2 acts
around each fixed point on Y ′ with smooth image on X ′ as a reflection group. Starting from a preimage
of the intersection point of Ej and C ′0 we see that Z2 acts effectively on Fj because it acts trivially on
D′

0, see Figure 2. This means that [Fj : Ej ] = 2. We calculate

e(Fj) = he(Fj) = [Fj : Ej ] · he(Ej) = 2 · [e(Ej)− 2(1− 1
2
)] = 2;

(F 2
j ) = hτ (Fj) = [D′

j : C ′j ] · hτ (Ej) = 2 · [(E2
j ) +

1
2
] = −1.

Forgetting for a moment D+
2 and D−

2 we get the following configuration on Y ′:
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From (43) follows that

(44) χ(Ŷ ) =
1
4
(e + τ) = 1, c2

1(Ŷ ) = 12χ− e = 8.

Blowing down the curves F1, F2, F3 we get two crossing smooth rational curves with selfintersection 0
on Ŷ , for instance D+

1 and D−
3 . There is up to isomorphy only one smooth compact surface with Chern

numbers χ = 1 and c2
1 = 8 and such crossing curve pair, namely P1 × P1. For this fact we refer to

[H98], end of V.2 (blow up the intersection point of the curves and blow down the two curves to get a
smooth rational surface with c2

1 = 9, which must be P2, see [H98], V.2, Proposition 5.2.4). Taking in
consideration now also D+

2 and D−
2 we get the following branch configuration on Ŷ = B̂/Γ2 = P1 × P1
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Figure14.

The six circles mark the (abelian) quotient points (images of all Γ2-elliptic points on B); the three
boxes mark the compactifying cusp points. D̂0 crosses each of the three marked horizontal and three
vertical fibres in precisely one point. Therefore D̂0 is a section for both canonical projections of P1×P1.
Blowing up the central cusp point in Figure 14 and blowing down the two D̂+

2 and D̂−
2 after, then D̂0

becomes a smooth rational curve on P2 with selfintersection 1, hence a projective line. It is uniquely
determined as line through the remaining two cusp points. Therefore D̂0 coincides with the diagonal
line on P1 × P1.

Altogether we get the following

Theorem 8.4 The compactified ball quotient surface B̂/Γ2 is isomorphic to P1 × P1. The compactified
branch locus of the quotient map p : B −→ B/Γ2 consists of three horizontal fibres D̂+

j , three vertical
fibres D̂−

j and the diagonal D̂0. The configuration is Z2 × S3-invariant, where the generator of Z2

changes the P1-components of each point (P, Q) ∈ P1 × P1 and S3 acts by simultaneous permutation of
natural homogeneous P2-coordinates (x : y : z) with sum zero (x + y + z = 0), on both components. The
cusp points are the three intersection points of the diagonal curve D̂0 with the other curves D̂±

j . The
ramification indices of p at D̂0 or D̂±

j are 2 or 4, respectively, for j = 1, 2, 3.
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The 2S3-invariance comes from the factor group Γ/Γ2. Cusp points and the branch indices are simply
lifted from those of

B −→ B/Γ(π) = Y/Z2 = P2 \ {K1,K2,K3},
with obvious notation. Only at D0 we loose the factor 2, while the other branch indices remain to be 4.

¤

We want to interprete the ball quotient surface B̂/Γ = P2/S3 = P1×P1/2S3 as compactified moduli
space of a special curve family. Following Shimura [Sm64] we consider plane curves of affine equation
type Y 4 = p2(X)p3(X)2, where pn(X) ∈ C[X] denotes a normalized polynomial of degree n. The
normalization C̃ of its projective closure C ⊂ P2 has genus 3 in general. This happens, if the the five
zeros of the X-polynomial of

Cα,β : Y 4 = (X − α1)(X − α2)(X − β1)2(X − β2)2(X − β3)2,
α = (α1, α2), β = (β1, β2, β3),

on the right-hand side are pairwise different. In the appendix the corresponding parameter space
is denoted by Λ. We defined a curve families CΛ = C/Λ and C̃Λ = C̃/Λ on this way. The group
2S3 = Z2 × S3 = 〈τ〉 × S3 acts in obvious manner on these families, where τ transposes α1 and α2 and
S3 permutes the indices of β1, β2, β3. The curves over 2S3-equivalent points are the same.

Matsumoto [Mat] and van Geemen [vGm] work with the following family CM/M

Cγ : Y 4 = X2(X − 1)2(X − γ1)(X − γ2), γ = (γ1, γ2) ∈ M,

over M = (C∗∗×C∗∗)\∆, C∗∗ = C\{0, 1}, ∆ the diagonal, respectively with its fibrewise normalization
C̃M/M . Here the 2S3-action on M respecting isometry of fibre curves is more hidden, but the connection
with the ball quotient surfaces is immediate. Namely, M can be identified with the complement of the
seven lines on P1×P1 described in Figure 14. The connection with both families of hyperelliptic curves
of genus 3 with Q(i)-multiplication is given in the appendix by A. Piñeiro: The first family is the pull
back of the second along the surjective morphism

γ : Λ −→ C∗∗ × C∗∗,

(α, β) 7→ γ(α, β) = (
β3 − α1

β1 − α1
:

β3 − β2

β1 − β2
,

β3 − α2

β1 − α2
:

β3 − β2

β1 − β2
).

The α-transposition τ goes down to the transposition of γ1 and γ2, and the S3-generatiing β-transpositions
of (1, 3), (2, 3) on Λ go down to (γ1, γ2) 7→ ( 1

γ1
, 1

γ2
) or (γ1, γ2) 7→ (1−γ1, 1−γ2), respectively. These three

transpositions generate the subgroup AutholM ⊃ T ∼= 2S3 of the appendix. We have a commutative
moduli diagram of algebraic morphisms

(45)

Λ −→ M ↪→ P1 × P1 = B̂/Γ2

↓ ↓ ↓
Λ/〈τ〉 −→ M/〈τ〉 ↪→ P2 = B̂/Γ(π)
↓ ↓ ↓

Λ/2S3 −→ M/2S3 ↪→ P2/S3 = B̂/Γ

M/2S3 is the moduli space of the curve family C̃M by Proposition 10.2 of the appendix. But P2/S3 =
B̂/Γ is also the moduli space of abelian 3-folds with Q(i)-multiplication of type (2, 1), see [Sm63]. The
Jacobians of the above curves C̃α,β or C̃γ are obviously abelian threefolds of this type, see [Sm64]. It
follows that

Theorem 8.5 The compactified moduli spaces of of the curve families C̃Λ, C̃M and of (principally
polarized) abelian 3-folds with Q(i)-multiplication of type (2, 1) coincide with P2/S3

∼= B̂/Γ.

¤

By Tschirnhaus transformation we can restrict our family CΛ to the family C0 over

Λ0 := {(α, β) ∈ Λ ; α1 + α2 = 0}
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without loosing isomorphy classes of the fibre curves. Setting a = α1 = −α2 we have over Λ0 curves of
equation type

Ca,β : Y 4 = (X − a)(X + a)(X − β1)2(X − β2)2(X − β3)2

It is also obvious that two curves over two points on each line C(α, β) are isomorphic. Therefore the
isomorphy classes of our curves are completely represented by the curves

(46) Cb : Y 4 = (X − 1)(X + 1)(X − b1)2(X − b2)2(X − b3)2, b = (b1, b2, b3)

defining a family C1 over Λ1 ⊂ Λ0 defined by the equation a = 1. With bi = βi

a the restrictions γ0, γ1

of γ to Λ0 or Λ1 are the correspondences

(a, β) or b 7→ (
b3 − 1
b1 − 1

:
b3 − b2

b1 − b2
,

b3 + 1
b1 + 1

:
b3 − b2

b1 − b2
),

respectively. Knowing the image (γ1, γ2) we can reconstruct β1, β2, β3 up to a common factor. Namely,

γ1

γ2
=

b3 − 1
b1 − 1

:
b3 + 1
b1 + 1

;

fixing one of the numbers b1, b3 we get the other one, and finally b2 from γ1 or γ2. So there is a
well-defined rational map

Λ1 3 (β1, β2, β3) 7→ (β1 : β2 : β3) −→ (γ1, γ2) ∈ M

We use the order of zeros of p(X) = (X − a)(X + a)(X − β1)2(X − β2)2(X − β3)2 to distinguish twice
the corresponding curves Ca,β : Y 4 = p(X) of Shimura equation type: firstly by the order of a, −a,
secondly by the order of β1, β2, β3. Observe that the order of γ1, γ2 determines the order of the linear
factors X − 1, X + 1. Forgetting the order of γ1, γ2 means to forget the order of the two linear factors.
Then we say that our curves are (only simply) distinguished.

Theorem 8.6 The sufaces P1 × P1 = B̂/Γ2 and P2 = B̂/Γ(π) are the (compactified) moduli spaces of
double distinguished respectively distinguished curves of Shimura equation type. More precisely: The
correspondence

Ca,β 7→ Pβ = (β1 : β2 : β3)

defines a map to the moduli space P1 × P1 ⊃ M of distinguished curves, which restricts to the set of
curves C+

b = C1,b and C−b = C−1,b. Via 〈τ〉 ∼= Z2- equivalence interchanging the curves C+
b and C−b

we get a map to the moduli space P2 = P1 × P1/〈τ〉 ⊃ M/〈τ〉 of distinguished curves, which restricts in
isomorphy-compatible manner to the curves C+

b = Cb defined in (46).

¤
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9 Class fields corresponding to simple abelian CM threefolds
of Q(i)- type (2, 1)

Consider the uniformizing analytic morphism

p = pΓ(π) B −→ P2, τ 7→ t = p(τ).

again. Fix projective coordinates on P2 such that S3 = Γ/Γ(π) acts by permutations of them. This
means that the branch locus coincides with the normalized symmetric Apollonius configuration

T1 = 0, T2 = 0, T3 = 0, T 2
1 + T 2

2 + T 2
3 − 2T1T2 − 2T1T3 − 2T2T3 = 0,

see 2.4, 2.3.
Let V be the hermitian vector space (C3, < , >) with the hermitian diagonal form < , > of signature

(2, 1). Take a, b, c ∈ V such that a2 :=< a, a >< 0 and b, c is a base of the orthogonal complement a⊥

of a in V . The corresponding Picard matrix is defined as

Π = Π(a, b, c) =
(

ta
tb̄
t c̄

)
.

Using the (real) involutionˆ :

(
x1
x2

...xn

)
7→

(
x1
x̄2

...x̄n

)
on Cn we define a Z-lattice

ΛΠ = Λ(a, b̄, c̄) = O ◦ a + O ◦ b + O ◦ c ⊂ V

with O = Z+Zi and the (real) operation λ ◦ x := λ̂x on V . Checking Riemann period relations it turns
out that Λ(a, b̄, c̄) is a period lattice of an abelian 3-fold. This means that

AΠ = A(a, b̄, c̄) := V/Λ(a, b̄, c̄)

is an abelian variety with (principal) polarization given by the imaginary part of the hermitian form
< , > restricted to the lattice. The ◦-operation of C on V restricted to K = Q(i) goes down to the
(2, 1)-multiplication of K on AΠ. Two of our principally polarized abelian 3-folds AΠ and A(a′, b̄′, c̄′)
are isomorphic if the ball points τ = Pa and τ ′ = Pa′ (both on B ⊂ P2 = PV ) are Γ = SU((2, 1), O)-
equivalent. Especially, the isomorphy class Aτ is well-defined. Moreover, for almost all τ ∈ B, that
means for all points τ outside of a thin (but dense) analytic subset R of B, also the inverse conclusion
holds. This is a special way to recognize B̂/Γ as moduli space (Shimura surface) of (principally polarized)
abelian 3-folds with K-multiplication of type (2, 1). Together with Theorem 8.6 we connect curve moduli
space via Jacobians with the π = (1 + i)-level Shimura surface and get the following

Theorem 9.1 Let
R = Γ(π)D0 ∪ Γ(π)D1 ∪ Γ(π)D2 ∪ Γ(π)D3

be the ramification locus of p = pΓ(π) : B −→ P2 consisting of the Γ(π)-shifts of four complete linear

subdiscs Di of B, which is the preimage of the Apollonius configuration of P2 = B̂/Γ(π). For all τ ∈ B\R
it holds that:

Aτ
∼= A′τ if and only if τ ′ ∈ Γ(π)τ.

¤

On this way the (principally polarized) abelian 3-folds At := Aτ = Jac(C̃t), t = p(τ) are well-defined
up to isomorphy. We say that At has decomposed complex multiplication, if it splits up to isogeny into
simple abelian varieties with complex multiplication. The corresponding points τ ∈ B or t = p(τ) ∈ P2

are called DCM-points. In more precise language we have to distuinguish between DCM period points
on B and DCM moduli points on P2. A famous general theorem of Shiga-Wolfahrt [S-W], applied to
our situation, states that

Theorem 9.2 The ball point τ (or plane point t) is a DCM-point if and only if both, τ and t = p(τ),
are points with algebraic coordinates.
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¤

Things are well-defined using canonical coordinates of the embedded ball B ⊂ C2 respectively homo-
geneous coordinates on P2 with Apollonius configuration defined over Q̄. A DCM-point τ or t = p(τ) is
a CM-point, iff the corresponding abelian 3-fold is simple. The corresponding curves C̃t normalizing

Ct : Y 4 = (X2 − 1)(X3 + g1X
2 + g2X + g3)2 = (X2 − 1)((X − t1)(X − t2)(X − t3))2,

or abelian 3-fold At = Jac(C̃t) are called CM- curves or abelian CM-threefolds, respectively. The set of
CM-points is dense on B or P2, respectively. A K-line L on P2 is a projective line through two different
points belonging to P2(K). The intersections of K-lines with B are called K- discs on B. In [Ho94] we
proved

Theorem 9.3 A DCM period point τ ∈ B is a CM-point if and only if Fτ := K(τ) is a cubic extension
of K. The locus of all period points τ ∈ B, where Aτ is not simple coincides with the union of all K-discs
on B. If the completion D̄ of a K-disc D contains a cusp κ ∈ B(K) = B ∩ P2(K), then p(D) is a plane
modular curve. If this is not the case, then p(D) is a (compact plane) Shimura curve corresponding to
abelian surfaces B with End0B isomorphic to a fixed indefinite quaternion field.

¤

Let τ be a CM-point. The field Fτ is isomorphic to the endomorphism algebra End0Aτ = Q⊗EndAτ .
The diagonalized representation of Ft on the tangent space of Aτ (at O) yields three different embeddings
ϕ1, ϕ2, ϕ3 of Fτ into C extending the (2, 1)-embedding of the K-multiplication. Φ = (ϕ1, ϕ2, ϕ3) is known
as type of the Fτ - multiplication. Up to isomorphy we have for each CM-point t = p(τ) ∈ P2 the complex
multiplication field Ft

∼= Fτ with unique action type Φ on (the tangent space of) At. The reflex field F ∗t
of Ft is the field generated over Q by the Φ-traces TrΦ = ϕ1(f) + ϕ2(f) + ϕ3(f) of all elements f ∈ F .

We want to define a Picard modular function j : B −→ P2. For

o 6= t := (t1, t2, t3) ∈ C3, t = Pt = (t1 : t2 : t3),

set

ft(X) = (X − t1)(X − t2)(X − t3) = X3 − g1X
2 + g2X − g3,

g1 = g1(t) = t1 + t2 + t3,

g2 = g2(t) = t1t2 + t1t3 + t2t3,

g3 = g3(t) = t1t2t3.

Consider the homogeneous symmetric polynomials in t1, t2, t3
(47)

H1 = H1(t) := g1g2 − 3g3 = t1t2(t1 + t2) + t2t3(t2 + t3) + t1t3(t1 + t3),

H2 = H2(t) := g3
1 − 2g1g2 + 3g3 = t2(t1 + t2)(t2 + t3) + t3(t1 + t3)(t2 + t3) + t1(t1 + t2)(t1 + t3),

H3 = H3(t) := H1 + 2g3 = g1g2 − g3 = (t1 + t2)(t1 + t3)(t2 + t3)

and the corresponding functions
(48)

J1 = J1(t) := H1/g3 =
g1g2

g3
− 3 =

t1 + t2
t3

+
t1 + t3

t2
+

t2 + t3
t1

,

J2 = J2(t) := H2/g3 =
g3
1 − 2g1g2

g3
+ 3 =

(t1 + t2)(t2 + t3)
t1t3

+
(t1 + t3)(t2 + t3)

t1t2
+

(t1 + t2)(t1 + t3)
t2t3

,

J3 = J3(t) := H3/g3 =
g1g2

g3
− 1 = J1 + 2 =

(t1 + t2)(t1 + t3)(t2 + t3)
t1t2t3

.

We have the polynomial relation

(49)
(Z − t1 + t2

t3
)(Z − t2 + t3

t1
)(Z − t3 + t1

t2
) = Z3 − H1

g3
Z2 +

H2

g3
Z − H3

g3

=Z3 − J1Z
2 + J2Z − J3 = Z3 − J1Z

2 + J2Z − (J1 + 2)
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The rational functions Ji(t) on P2 define a rational map and the lifted meromorphic map

(50)
J(t) = (J1(t), J2(t)),
j(τ) = J(p(τ)) = J(t)

on P2 or on B, respectively. Writing J in homogeneous coordinates,

J : P2 · ·· → P2, t 7→ (H1(t) : H2(t) : g3(t)),

we see that it factorizes through P2/S3 and is precisely defined (as morphism) outside the three points

Q1 = (0 : 1 : −1), Q2 = (1 : 0 : −1), Q3 = (0 : 1 : −1) (defined by g1 = g3 = 0).

Then the meromorphic lift j = J ◦ p is a well-defined analytic map outside of

p−1(Q1, Q2, Q3) ⊂ Γ(π)D1 ∪ Γ(π)D2 ∪ Γ(π)D3.

Especially, j is defined at each CM-point of B because all the discs appearing on the right-hand side of
this inclusion are Γ(π)-reflection discs, hence K-discs. Here we use Theorem 9.3.
For a number field F we denote the Galois group Gal(Q̄/F ) of all automorphisms of the algebraic closure
Q̄ of Q fixing F elementwise by GF . Let C̃ ⊂ PN be a smooth complex projective curve defined over
an algebraic number field L. The group GQ acts via projective coordinates on the set C̃(Q̄) of algebraic
points of C̃. The application of σ ∈ GQ on the coefficients of the defining equations of C̃ defines the
curve C̃σ. In general the curves C̃σ is not isomorphic to C̃. The moduli field of C̃ is defined as

M(C̃) := {σ ∈ GQ; C̃σ ∼= C̃}.
Fix t ∈ Q̄3, C̃ = C̃t and its moduli field M = M(C̃).

Proposition 9.4 If t = Pt ∈ P2 does not belong to the Apollonius configuration and g1(t) 6= 0, then
M(C̃t) = Q(J(t)).

Proof. We have t1, t2, t3 6= 0, hence g3 = g3(t) 6= 0. To show the equivalence of the two conditions

(i) σ ∈ GQ fixes the isomorphy class of C̃t;

(ii) σ fixes Q(J(t)) elementwise.

The condition (ii) can be transformed successively to the equivalent conditions:

σ fixes J1(t) and J2(t)
⇐⇒

σ fixes the polynomial Z3 − J1Z
2 + J2Z − (J1 + 2) ∈ Q̄[Z]

⇐⇒
(by (49)

σ fixes H1
g3

, H2
g3

and H3
g3⇐⇒

σ permutes u3 := t1+t2
t3

, u2 := t1+t3
t2

, u1 := t2+t3
t1

)
⇐⇒

σ permutes u3 + 1 = g1/t3, u2 + 1 = g1/t2, u1 + 1 = g1/t1
⇐⇒

σ permutes t1, t2, t3 up to a common factor
⇐⇒

(by Piñeiro’s Proposition 10.2 pushed down to P2, see 8.4)
σ preserves the isomorphy class of C̃t.

¤

Remark 9.5 Moduli points t ∈ P2 on the line L : T1 + T2 + T3 = 0 correspond to curves of equation
type

(51) Ct : Y 4 = (X2 − 1)p(X)2 = (X2 − 1)(X3 + g2(t)X + g3(t))2.
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Looking at towers of function fields around the smooth projective curves C̃ = C̃t for general parameters
t ∈ L

(52) C(x) ⊂ C(C̃) = C(C) = C(x, y) ⊂ C(x)(v, w) , v4 = x2 − 1, w2 = p(x),

we see that a 2-sheeted cover of C̃ coincides with a 4-cyclic cover of the elliptic curve with Weierstraß
equation W 2 = p(X). Unfortunately, L is not a quotient of a K-disc D ⊂ B because the signature hight
of the orbital line L on B̂/Γ(π) is equal to 1 by (10) but it must be negative for orbital disc quotients, see
4.7. Therefore the Jacobians of the curves (51) are simple in general by Theorem 9.3. The intersection
points of L with the quadric X2 + Y 2 + Z2 − 2XY − 2XZ − Y Z = 0 of our normalized Apollonius
configuration are (1 : ρ : ρ2) and (ρ : 1 : ρ2), ρ = e2πi/3, which are isolated fixed points of elements of
order 3 of S3. Since S3 lifts to isomorphic subgroups in Γ, these are the images of Γ-elliptic points on B
of same quality, represented by (1 : −ρ : ρ−1), (ρ : −1 : 1−ρ) lying on the disc D = B∩P(1, 1,−1)⊥,
whose p-image D/Γ ⊂ B/Γ has nothing to do with L. Its compactification goes through cusp points
because (1 : 0 : −1) and (0 : 1 : −1) are Γ-cusps on the boundary of D. It is a separate interesting
question to find and investigate CM-points/-curves of the special subfamily (52) but also of the Shimura
curve D/Γ.

Theorem 9.6 Let τ ∈ B\p−1(L) be a CM-point with respect to our curve family, K = Q(i), F = K(τ)
the corresponding cubic extension of K and F ∗ the reflex field with respect to Aτ

∼= Jac C̃p(τ). Then
F ∗(j(τ)) is an abelian field extension (class field) of F ∗.

Proof. It is a consequence of the first Main Theorem of complex multiplication (see [H95], Ch.IV,
and the basic text books of Shimura-Taniyama [S-T] and Lang [La]) that F ∗- extended moduli field
F ∗M(Aτ ) = F ∗M(C̃p(τ)) is abelian extension (Shimura class field) of F ∗. By (50) and Proposition 9.4
the moduli field coincides with Q(J(t)) = Q(j(τ)).

¤

It is clear that F ∗(t) = F ∗(p(τ)) is a definition field of the (isomorphy class of) Aτ containing F ∗.
Over such definition fields the torsion points of the abelian CM-variety yield abelian extensions over
the definition field by the second Main Theorem of complex multiplication (see [S-T], [La], [Sm71],
Proposition 7.41). So we get the

Proposition 9.7 For CM-points τ ∈ B, t = p(τ) ∈ P2, and a projective model A = At of Aτ = Jac(C̃t)
the field extension F ∗(t)(Ator) is abelian.

¤

Problem 9.8 Find explicitly Γ(π)-modular forms (maybe of Nebentypus) θ1, θ2, θ3 on B such that
(θ1 : θ2 : θ3) : B −→ P2 coincides with the canonical quotient map onto B̂/Γ(π), up to compactification.
This would solve the explicit Schottky-problem to find the curve Y 4 = (X − 1)(X + 1)(X − θ1(B))2(X −
θ2(B))2(X − θ3(B))2 with given period point B ∈ B.

Hints. For Eisenstein numbers and the family of Picard curves Y 3 = p4(X) this problem has been
solved in terms of theta constants by Shiga [Shg], Feustel [Feu], see also [H86], [H95], [H98] for a basic
approach and further connections, especially with some Hilbert problems. Tobias Finis [Fin] found
explicitly the Fourier-Jacobi series of the correspondung modular forms.

For Gauß numbers and the congruence subgroup Γ(π2) we refer to van Geemen’s article [vGm]
presenting theta constants without precise knowledge of the corresponding surface ̂B/Γ(π2). As next step
this orbital surface should be classified knowing that it is the biquadratic covering of P1 × P1 branched
with ramification index 2 along the three horizontal and three vertical fibres drawn in Figure 14.
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10 Appendix 1 (by A. Piñeiro): The moduli space of hyperel-
litic genus 3 curves with Q(i)-multiplication

In this section we will study the space of moduli of the family F of curves with affine model

Cα1α2β1β2β3 : y4 = (x− α1)(x− α2)(x− β1)2(x− β2)2(x− β3)2

where the vector of parameters (α1, α2, β1, β2, β3) ∈ C5. For fixing some notation we put for i = 1, 2 ;
j = 1, 2, 3 ; k = 1, 2, 3 and j 6= k

Λα1=α2 = {(α1, α2, β1, β2, β3) ∈ C5 / α1 = α2}
Λβk=βj

= {(α1, α2, β1, β2, β3) ∈ C5 / βk = βj}
Λαi=βj = {(α1, α2, β1, β2, β3) ∈ C5 / αi = βj}

and
Λ = C5 \ (Λα1=α2

⋃

k 6=j

Λβk=βj

⋃

1≤j≤3

Λα1=βj

⋃

1≤j≤3

Λα2=βj
)

and firstly concentrate ourselves to the open part

F0 = {Cα1α2β1β2β3 ∈ F / (α1, α2, β1, β2, β3) ∈ Λ}
Making birational transformations we can obtain an affine model for a curve Cα1α2β1β2β3 ∈ F0 as

Cγ1γ2 : y4 = (x− γ1)(x− γ2)x2(x− 1)2

where the new parameters are exactly

γ1 =
(β1 − β2)(β3 − α1)
(β1 − α1)(β3 − β2)

γ2 =
(β1 − β2)(β3 − α2)
(β1 − α2)(β3 − β2)

We observe that τ = y2/x(x − 1)(x − γ1) defines a rational map τ : Cγ1γ2

2:1−→ P1 . Taking the
normalization (C̃γ1γ2 , σ) of Cγ1γ2 we obtain a degree two morphism π with commutative diagram

Cγ1γ2 C̃γ1γ2

P1

?

τ

¡
¡

¡
¡ª

π

¾σ

The curve C̃γ1γ2 is therefore hyperelliptic with the set

σ−1{(γ1, 0); (γ2, 0); (0, 0); (1, 0); (∞,∞)}
as branch locus.
The values of π at this points

π(σ−1(γ1, 0)) = ∞P1
π(σ−1(γ2, 0)) = 0
π(σ−1(0, 0)) = ±

√
γ2
γ1

π(σ−1(1, 0)) = ±
√

1−γ2
1−γ1

π(σ−1(∞)) = ±1
determine the equation:

C̃γ1γ2 : w2 = u(u2 − γ2

γ1
)(u2 − 1− γ2

1− γ1
)(u2 − 1)

In orther to study the moduli space of the curves C̃γ1γ2 we will intensively use the following well-known
theorem, which permits us to express the moduli space of any family of hyperelliptic curves Cγ1,..,γr of
fixed genus as a quotient of Cr througt a subset of Aut(P1).
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Theorem 10.1 Let be (C, π), (C ′, π′) two hyperelliptic curves and ϕ : C → C ′ a morphism of them.
Then ϕ is an isomorphism if and only if there exists an automorphism ρ of P1 such that the following
diagram is commutative:

C C ′

P1 P1

-ϕ

?
π

?
π′

-ρ

Proposition 10.2 Let’s consider the group T generated by the following three automorphisms of C2

• t1(γ1, γ2) = (γ2, γ1)

• t2(γ1, γ2) = (1− γ1, 1− γ2)

• t3(γ1, γ2) = ( 1
γ1

, 1
γ2

)

Then it holds that:

(i) T has 12 elements

(ii) C̃γ1γ2
∼= C̃γ

′
1γ
′
2
⇔ (γ′1, γ

′
2) = t(γ1, γ2) for some t ∈ T .

Proof. We begin with the proof of (ii) ⇒. Let ϕ : C̃γ1γ2 → C̃γ
′
1γ
′
2

be an isomorphism. By Theorem
10.1 there exist a projective transformation ρ such that the following diagram is commutative:

C̃γ1γ2 C̃γ′1γ′2

P1 P1

-ϕ

?

π

?

π′

-ρ

Denoting by B or B′ the branch locus of C̃γ1γ2 or C̃γ
′
1γ
′
2
, respectively, we have ϕ(B) = B′.

But we also have for some birational map δ the commutative diagram

C̃γ1γ2 C̃γ′1γ′2

Cγ1γ2 Cγ′1γ′2

-ϕ

?

σ

?

σ′

-δ
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Setting
o = (0, 0, 1) ∈ C̃γ1γ2 ∞ = (0, 1, 0) ∈ C̃γ1γ2

o′ = (0, 0, 1) ∈ C̃γ
′
1γ
′
2

∞′ = (0, 1, 0) ∈ C̃γ
′
1γ
′
2

we get σ′(ϕ(∞, o)) = δ(σ(∞, o)) and ϕ{∞, o} = {∞′, o′} because the set σ(∞, o) consists of simple
points of Cγ1γ2 , the set σ′(B′ − {∞′, o′}) consists of singular points of Cγ′1γ′2 and the birational trans-
formation δ maps simple points to simple points.
Now the first diagram gives

ρ(π{o,∞}) = π
′
(ϕ{o,∞})

ρ{0,∞P1} = {0,∞P1}
At this point we have obtained that our ρ’s are only allowed to have the form ρ(u) = lu or ρ(u) = l/u.
In order to simplify our arguments we define

Definition 10.3 We will call a vector (l, γ
′
1, γ

′
2) ∈ C3 admissible, if there exist a vector (γ1, γ2) ∈ C2

and a projective transformation ρlγ1γ2 of the form ρ = lu or ρ = l/u such that

ρlγ1γ2{±
√

γ2

γ1
,±

√
1− γ2

1− γ1
, 1,−1} = {±

√
γ′2
γ′1

,±
√

1− γ′2
1− γ′1

, 1,−1}

By our calculations for ρ(u) = lu we obtain the vectors

(l, γ
′
1, γ

′
2) = (±1, γ1, γ2) = (±1, id(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±1, 1− γ1, 1− γ2) = (±1, t3(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
γ1
γ2

, 1/γ1, 1/γ2) = (±
√

γ1
γ2

, t2(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
γ1
γ2

, 1− 1/γ1, 1− 1/γ2) = (±
√

γ1
γ2

, t3 ◦ t2(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
1−γ1
1−γ2

, γ1−1
γ1

, γ2−1
γ2

) = (±
√

1−γ1
1−γ2

, t3 ◦ t2 ◦ t3(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
1−γ1
1−γ2

, 1
1−γ1

, 1
1−γ2

) = (±
√

1−γ1
1−γ2

, t2 ◦ t3(γ1, γ2))

And for ρ(u) = l/u

(l, γ
′
1, γ

′
2) = (±1, γ2, γ1) = (±1, t1(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±1, 1− γ2, 1− γ1) = (±1, t3 ◦ t1(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
γ2
γ1

, 1/γ2, 1/γ1) = (±
√

γ2
γ1

, t2 ◦ t1(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
γ2
γ1

, 1− 1/γ2, 1− 1/γ1) = (±
√

γ2
γ1

, t3 ◦ t2 ◦ t1(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
1−γ2
1−γ1

, γ2−1
γ2

, γ1−1
γ1

) = (±
√

1−γ2
1−γ1

, t3 ◦ t2 ◦ t3 ◦ t1(γ1, γ2))

(l, γ
′
1, γ

′
2) = (±

√
1−γ2
1−γ1

, 1
1−γ2

, 1
1−γ1

) = (±
√

1−γ2
1−γ1

, t2 ◦ t3 ◦ t1(γ1, γ2))

We have already proved (ii)⇐, and we know that (#T ) ≥ 12.
Now we obtain (i) as a consequence of the followings facts

(a) t2i = 1 (1 ≤ i ≤ 3)
(b) t ◦ t1 = t1 ◦ t ∀t ∈ T
(c) t2 ◦ t3 ◦ t2 = t3 ◦ t2 ◦ t3

In order to prove the other direction of (ii), we suppose that two points (γ1, γ2) and (γ
′
1, γ

′
2) are related

by t(γ1, γ2) = (γ
′
1, γ

′
2) for some t ∈ T . Choose an admissible vector (l, γ

′
1, γ

′
2) and apply Theorem 10.1

with ρ = ρlγ1γ2 and ϕ(x, y) = (ρlγ1γ2(x), y).
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¤

The moduli space of the curves belonging to the family F0 can be now expressed as

Corollary 10.4 F0
∼= C2/T
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11 Appendix 2 (by N. Vladov): Determination of all propor-
tional Apollonius cycles by MAPLE package “Picard”

Picard is a MAPLE package for creating and working with orbital invariants. We explain how it works
on Apollonius configuration (see the end of the programm).

Let us consider again Figure 2. There are points, curves and the surface X′. These are our ba-
sic orbital objects. We create orbital object for C′

0 with orbital(C0, type=curv, init=[2,-2],
member={S1,S2,S3}, weight=c0). Here C0 is the curve name; curv is the type of the object. Similar
for points R1,R2,R3 type is abel and for surface X type is surf. By surface and curves init is the vec-
tor [euler-number, selfintersection] and [euler-number, signature] respectively. The curve C0 intersects
exceptional curves E1,E2,E3 at S1,S2,S3 and C0 has member={S1,S2,S3}. For a surface object as X
member has another sence. It is a list of curves and a list of points. If any point belongs to a curve (not
isolated point) one can skip this point.

For abelian points with resolution different from 〈1, 0〉 it is important to create separate orbital
objects. Such a point is R1 and one writes orbital(R1, type=abel, resol=[2], member=[E1],
weight=[e1,1]). Here resol=[2] is the resolution of the contracted curve with selfintersection −2; R1
belongs to the curve E1 and have weighs e1 and 1 on E1 and on the contracted curve.

One creates orbital objects looking at atomic graphs (Figure 3 and Figure 2). We do not use the
weights 4 on ◦. The programm will look for possible weights.

Now all objects are on the computer memory. Using maincheckorbital(X) we check whether every-
thing is correct and mainproporinv(X) calculate the basic invariants for points, curves and surface. Ob-
taining these invariants we do not use that E1,E2,E3 are exceptional curves. Using makesingular(cusp,
X, {E1,E2,E3}) we contract three exceptional curves to cusp points. After computer calculation of all
finite invariants [he, hτ ]. Now with makeequations(X) one obtains equations: 4c0 = 1, c0 + cj = 1/2,
j = 1, 2, 3. Obviously this system has unique solution c0 = c1 = c2 = c3 = 1/4 (the programm uses
inverse weights).

We can try another possibilities. First with cleanornital(X) all finite invariants are deleted from
the memory and with makesingular(cusp,X,{E1,E2}), makesingular(triple,X,{E3}) one contracts
E1,E2 to cusp points and E3 to triple. Using makeequations(X) we obtain c1 = c2, 3c2 + c3 = 1,
4c2 + e3 = 1, c0 + c2 = 1/2. It is easy to see that there is unique solution: {c0 = 1/3, c1 = 1/6, c2 =
1/6, c3 = 1/2, e3 = 1/3} ∈ 1/N. In the similar way we consider the another cases: 1,0 cusp and 2,3 triple
points respectively. In case 0 cusp points (see the last example) it is not easy to solve the equations in
1/N.

I am preparing an extension to Picard package which will solve inverse linear systems Ax = B, A -
matrix, B -vector with rational coefficients, det A = 0, rankA = rankB. The solutions we are looking for
must be integers. Here we present the four unique proportional solutions for Apollonius configuration
satisfying the conditions (Prop 1), (Prop 2) of the Proportionality Theorem 1.1.

C0 C1 C2 C3 E1 E2 E3 cusps triples
4 4 4 4 ∞ ∞ ∞ E1 E2 E3 —
3 6 6 2 ∞ ∞ 3 E1 E2 E3

3 6 3 3 ∞ 6 6 E1 E2 E3

3 4 4 3 12 12 6 — E1 E2 E3

We denote the cusp type with graph 7 by (∞; 〈2, 1〉, 〈4, 0〉, 〈4, 0〉). The first number is the central
weight and the pairs stand for the three weighted curve germes through the central resolution curve.
This notation extends to all (smooth) orbital cusp and quotient points in obvious manner (see [H98]),
where quotient points have finite wights. On this way we correspond to the three tangent points of the
Apollonius configuration three such weight tuples. We read them off from the above table and get the
following

Theorem 11.1 Up to order there are precisely four triples of wight tuples attached to the tangent
points of the Apollonius configuration such that the proportionality conditions for ball quotient surfaces
are satisfied, namely

• [(∞,∞,∞)] :
(∞; 〈2, 1〉, 〈4, 0〉, 〈4, 0〉) , (∞; 〈2, 1〉, 〈4, 0〉, 〈4, 0〉) , (∞; 〈2, 1〉, 〈4, 0〉, 〈4, 0〉)
(the case of Gauß numbers)
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• [(∞,∞, 3)] :
(∞; 〈2, 1〉, 〈3, 0〉, 〈6, 0〉) , (∞; 〈2, 1〉, 〈3, 0〉, 〈6, 0〉) , (3; 〈2, 1〉, 〈3, 0〉, 〈2, 0〉)

• [(∞, 6, 6)] :
(∞; 〈2, 1〉, 〈3, 0〉, 〈6, 0〉) , (6; 〈2, 1〉, 〈3, 0〉, 〈3, 0〉) , (6; 〈2, 1〉, 〈3, 0〉, 〈3, 0〉)

• [(12, 12, 6)] :
(12; 〈2, 1〉, 〈3, 0〉, 〈4, 0〉) , (12; 〈2, 1〉, 〈3, 0〉, 〈4, 0〉) , (6; 〈2, 1〉, 〈3, 0〉, 〈3, 0〉)

¤

# Picard Package for Proportional Orbital Invariants

# available by author: Nikola Vladov <vladov@fmi.uni-sofia.bg>

### Orbital Functions:

# orbital

# mainproporinv proporinv

# makesingular makesingsurface makesingcurve

# maincheckorbital checkorbital

# cleanorbital

# showsolution

# makeequations

####################

orbital:=proc(X,a,b,c,d,e,f,g) local opt,str;

if nargs=0 then RETURN(‘usage: orbital(name,<options>)‘) fi;

if not(type(X,name)) then ERROR(‘First arg must be name‘, X) fi;

if not(assigned(X[type_])) then

X:=table(); X[name_] := args[1]; fi;

for opt in [args[2..nargs]] do

if type(opt,‘=‘) then

str:=substring(op(1,opt),1..3);

if str=’typ’ and type(op(2,opt),name) then X[type_]:=op(2,opt)

elif str=’sin’ and type(op(2,opt),list) then X[singularity_]:=op(2,opt)

elif str=’res’ and type(op(2,opt),list) then X[resolution_]:=op(2,opt)

elif str=’mem’ and (type(op(2,opt),list) or type(op(2,opt),set)) then

X[member_]:=op(2,opt)

elif str=’wei’ then X[weight_]:=op(2,opt)

elif str=‘ini‘ and type(op(2,opt),list) then X[init_] := op(2,opt)

fi;

fi; # type(opt,‘=‘) then

od;

if not(assigned(X[type_])) then ERROR(X, ‘type_ is not defined‘) fi;

userinfo(7,orbital, ‘Create object‘, X, X[type_]);

end:

####################

mainproporinv:= proc(X) local c,p; # X orbital surface

for p in X[points_] do proporinv(p) od;

for c in X[curves_] do proporinv(c) od;

proporinv(X);

end:

#####################

proporinv:=proc(X) local s,v,v1,v2,d,h1,h2,e,pp,cc,vi;

# X - orbital object

if nargs=0 then RETURN(‘usage: proporinv(X)‘) fi;

if X[type_] = ’abel’ then

v1:=X[weight_][1]; v2:=X[weight_][2]; d:=X[singularity_][1];
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if X[singularity_] = [1,0] then s:=0;

else

if not(assigned(X[resolution_])) then ERROR(‘Need resolution_‘, X) fi;

s := resoltoEDHsum(X[resolution_]);

fi;

X[propor_] := [ 1 - v1/d - v2/d + v1*v2/d , s]: # ABEL

elif X[type_] = ’curv’ then

h1:=X[init_][1]; h2:=X[init_][2]; v := X[weight_];

for pp in X[member_] do # each curve have members Points

if not(pp[type_] = ’abel’) then

ERROR(‘Curve must contain only abel Points on X’‘, X) fi;

d := pp[singularity_][1];

if nops(pp[member_]) = 1 then

vi:= pp[weight_][2]; e := pp[singularity_][2];

else

if pp[member_][1] = X[name_] then

vi:=pp[member_][2][weight_]; e:=pp[singularity_][2];

else vi:=pp[member_][1][weight_]; e:=etoeprim(pp[singularity_]);

fi;

fi;

h1 := h1 - 1 + vi/d; h2 := h2 + e/d;

od;

X[propor_] := [expand(h1),expand(h2*v)]; # CURVE

elif X[type_] = ’surf’ then

h1:=X[init_][1]; h2:=X[init_][2];

for pp in X[points_] do

h1:=h1-pp[propor_][1]; h2:=h2-pp[propor_][2]; od;

for cc in X[curves_] do

h1 := h1 - (1-cc[weight_]) * cc[propor_][1];

h2 := h2 - (1/cc[weight_]-cc[weight_]) * cc[propor_][2] /3; od;

X[propor_] := [expand(h1),expand(h2)]; # SURFACE

else ERROR(‘Unknown type_‘, X, X[type_]);

fi;

userinfo(9, orbital, ‘ ‘, X, X[type_]);

end:

###########

makesingular:= proc(type,X,CC) local out,scurv,tmp,c,e;

# type= cusp,triple, X=orbital surface, CC=[C1,C2,C3,...] list of curves

if nargs=0 then RETURN(‘usage: makesingular(type,X,[E1,E2,E3,...])‘) fi;

scurv := {};

out:= convert(X[curves_],set) minus convert(CC,set);

for c in out do

for e in CC do

tmp:= convert(e[member_],set) intersect convert(c[member_],set);

if nops(tmp) > 0 then scurv:= scurv union {c} fi;

od;

od;
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makesingsurface(type,X,CC);

for c in scurv do makesingcurve(type,c,CC) od;

end:

#################

makesingsurface := proc(type,X,CC) local c,h1,h2,e,tmp;

# make triples or cusps points from curves and calculate Surface

# Proportional Invariants.

# type=cusp,triple, X= orbital surface, CC=[C1,C2,C3,...] list of curves.

if nargs=0 then RETURN(‘usage: makesingsurface(type,X,[E1,E2,E3,...])‘) fi;

if not(assigned(X[cusps_])) then X[cusps_] := {} fi;

if not(assigned(X[triples_])) then X[triples_] := {} fi;

if assigned(X[finite_]) then

h1:= X[finite_][1]; h2:= X[finite_][2];

else

h1:= X[propor_][1]; h2:= X[propor_][2];

fi;

if type = ’cusp’ then

X[cusps_] := X[cusps_] union convert(CC,set);

for c in CC do

h1 := subs(c[weight_] = 0, h1);

h2 := subs(c[weight_] = 0, h2); od;

elif type = ’triple’ then

X[triples_] := X[triples_] union convert(CC,set);

for c in CC do

h1:= h1 - c[propor_][1]*c[weight_] / 2;

h2:= h2 + c[propor_][1]*c[weight_] / 2; od;

else ERROR(‘Unknown surface singularity‘, type,XX,CC);

fi;

X[finite_] := [expand(h1), expand(h2)];

userinfo(9,orbital, ‘ ‘, ‘Surface‘, type, CC);

end:

######################

makesingcurve := proc(type,C,EE) local p,e,h1,h2,tmpP,tmp;

# make finite invariant for curve C, [E1,E2,E3,...] list of central

# resolution curves, type=cusp,triple

if nargs=0 then RETURN(‘usage: makesingcurve(type,C,[E1,E2,E3,...])‘) fi;

if assigned(C[finite_]) then

h1:= C[finite_][1]; h2:= C[finite_][2];

else

h1:= C[propor_][1]; h2:= C[propor_][2];

fi;

if type = ’cusp’ then

for e in EE do

h1:= subs(e[weight_] = 0, h1);

h2:= subs(e[weight_] = 0, h2);

od;

elif type = ’triple’ then

for e in EE do

tmp := 0;

tmpP:= convert(C[member_], set) intersect convert(e[member_], set);

for p in tmpP do tmp:= tmp + e[weight_] / p[singularity_][1]; od;

h2:= h2 + tmp;

od;

else ERROR(‘Unknown curve singularity‘, type,XX,CC);
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fi;

C[finite_] := [h1, h2];

userinfo(9,orbital, ‘ ‘, ‘Curve‘, C,EE,type);

end:

######################

checkorbital:=proc(X) local tmp,c;

# check single orbital object

if nargs=0 then RETURN(‘usage: checkorbital(OrbitalName)‘) fi;

if not(type(X,name)) then ERROR(‘First arg must be name‘) fi;

if not(type(X,table)) then ERROR(‘Not type table‘, X) fi;

if not(assigned(X[type_])) then ERROR(‘Unknown type_‘, X) fi;

if X[type_] = ’abel’ then

if assigned(X[resolution_]) and assigned(X[singularity_]) then

tmp := resoltosing(X[resolution_]);

if not(tmp = X[singularity_]) then

ERROR(‘singularity_ and resolution_ are uncompatible‘, X) fi;

elif assigned(X[resolution_]) and not(assigned(X[singularity_])) then

X[singularity_] := resoltosing(X[resolution_]); fi;

if not(assigned(X[singularity_])) then

ERROR(‘Unknown resolution_ or singularity_‘, X) fi;

if assigned(X[member_]) and not(assigned(X[weight_])) then

if nops(X[member_]) > 2 then

ERROR(‘Abel point is member of maximal 2 curves‘, X);

elif nops(X[member_]) = 2 then

X[weight_] := [ X[member_][1][weight_], X[member_][2][weight_] ];

elif nops(X[member_]) = 1 then

X[weight_] := [ X[member_][1][weight_], 1];

fi;

elif not(assigned(X[member_])) and not(assigned(X[weight_])) then

X[weight_] := [1,1];

fi;

elif X[type_] = ’curv’ then

if not(assigned(X[init_])) then ERROR(‘Curve init_ = ?‘, X) fi;

elif X[type_] = ’surf’ then

if not(assigned(X[init_])) then ERROR(‘Surface init_ = ?‘, X) fi;

if not(assigned(X[member_])) then ERROR(‘Surface member_ = ?‘, X) fi;

if nops(X[member_]) = 2 then

X[curves_] := convert(X[member_][1],set);

X[points_] := convert(X[member_][2],set);

for c in X[curves_] do

X[points_] := X[points_] union convert(c[member_],set);

od;

X[member_] := ’X[member_]’;

else ERROR(‘Member_ must be = [ {C1,C2,C3,C4}, {P1,P2,P3} ] ‘, X) fi;

if not(assigned(X[cusps_])) then X[cusps_] := {} fi;

if not(assigned(X[triples_])) then X[triples_] := {} fi;

fi;

userinfo(9,orbital, ‘Check ‘, X, X[type_]);

end:

##################

maincheckorbital := proc(X) local p,c,cp;

# check all objects of orbital surface
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checkorbital(X);

for c in X[curves_] do checkorbital(c) od;

for p in X[points_] do

if not(assigned(p[singularity_])) and not(assigned(p[resolution_]))

then orbital(p,type=abel,memb={}) fi;

od;

for c in X[curves_] do

for cp in c[member_] do

if not(assigned(cp[singularity_]))

and not(assigned(cp[resolution_])) then

cp[member_] := cp[member_] union {c[name_]};

fi;

od;

od;

for p in X[points_] do

if type(p[member_],set) then p[member_]:=convert(p[member_],list) fi;

if not(assigned(p[singularity_])) and not(assigned(p[resolution_])) then

p[singularity_] := [1,0] fi;

od;

for p in X[points_] do checkorbital(p) od;

end:

########

cleanorbital := proc(X) local c;

# clean all finite objects

for c in X[curves_] do c[finite_]:=’c[finite_]’; od;

X[triples_]:={}; X[cusps_]:={}; X[finite_]:=’X[finite_]’;

userinfo(9,orbital, ‘Clean Orbital Surface‘, X);

end:

###############

showsolution := proc(X,V,S) local sol,fin,c,cusps,triples,j,tmp;

# check and show solution

# X=orbital surface, V={c0=1/4,c1=1/4,...} or

# V=[c0,c1,c2,...], S=[1/4,1/4,...], V-list ot curves’ weights or

# V=[C0,C1,C2,...], S=[1/4,1/4,...], V-list ot curves’ names

if nargs = 2 then sol:=V

elif assigned(V[1][weight_]) then

if not(nops(V) = nops(S)) then ERROR(‘Uncompatible vectors‘, V,S) fi;

cusps:= {}; triples:= {};

for j from 1 to nops(V) do

if S[j] = 0 then cusps := cusps union {V[j]};

elif S[j] < 0 then triples := triples union {V[j]}

fi;

od;

cleanorbital(X);

makesingular(‘cusp‘,X,cusps);

makesingular(‘triple‘,X,triples);

sol:= [seq(V[j][weight_] = abs(S[j]), j=1..nops(S))];

else

sol:= [seq(V[j] = S[j], j=1..nops(S))];

fi;

print(‘weights‘, sol);

if nops(X[cusps_]) > 0 then

print(‘Cusps‘);

for c in X[cusps_] do
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tmp:= [subs(sol,c[propor_][1]), c[propor_][2]];

if tmp[1] = 0 and tmp[2]/c[weight_] < 0 then print(‘ ‘.c, tmp);

else print(‘ERROR: ‘.c, tmp); fi;

od;

fi;

if nops(X[triples_]) > 0 then

print(‘Triples‘);

for c in X[triples_] do

tmp:= subs(sol,c[propor_]);

if tmp[1] >0 and -tmp[1] = 2*tmp[2] then print(‘ ‘.c, tmp);

else print(‘ERROR: ‘.c, tmp); fi;

od;

fi;

print(‘Prop. 1‘);

fin:= X[curves_] minus X[cusps_] minus X[triples_];

for c in fin do

if assigned(c[finite_]) then tmp:= subs(sol,c[finite_]);

else tmp := subs(sol,c[propor_]); fi;

if tmp[1] < 0 and tmp[1] = 2*tmp[2] then print(‘ ‘.c, tmp);

else print(‘ERROR: ‘.c, tmp); fi;

od;

print(‘Prop. 2‘);

if assigned(X[finite_]) then tmp:= subs(sol,X[finite_]);

else tmp:= subs(sol,X[propor_]); fi;

if tmp[1] > 0 and tmp[1] = 3*tmp[2] then print(‘ ‘.X, tmp);

else print(‘ERROR: ‘.X, tmp); fi;

userinfo(9,orbital, ‘ ‘);

end:

##########

makeequations := proc(X) local c,cusp,triple,p,other,i,A,AB, Ec,Et,Ef,fin;

global INEQ, EQUA, VARI, SOLU;

EQUA:={}; INEQ:= {}; VARI:= {}; cusp:= {}; triple:= {};

Ec:={}; Et:={}; Ef:= {};

if not(assigned(X[finite_])) then X[finite_] := X[propor_] fi;

for c in X[cusps_] do

Ec:= Ec union {c[propor_][1]};

INEQ:= INEQ union {-c[propor_][2]/c[weight_]};

cusp:= cusp union {c[weight_]};

od:

for c in X[triples_] do

Et:= Et union {c[propor_][1] + 2*c[propor_][2]};

INEQ:= INEQ union {-c[propor_][2]};

triple:= triple union {c[weight_]};

od:

fin:= X[curves_] minus X[cusps_] minus X[triples_];

for c in fin do

if assigned(c[finite_]) then

Ef:= Ef union {c[finite_][1] - 2*c[finite_][2]};

INEQ:= INEQ union {-c[finite_][2]};

else

Ef:= Ef union {c[propor_][1] - 2*c[propor_][2]};

INEQ:= INEQ union {-c[propor_][2]};

fi;
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od;

EQUA:= [ [seq(Ec[i], i=1..nops(Ec)),

seq(Et[i], i=1..nops(Et)),

seq(Ef[i], i=1..nops(Ef))],

expand(X[finite_][1]-3*X[finite_][2]) ];

INEQ:= [INEQ, expand(X[finite_][2]) ];

for p in X[points_] do

if not(type(p[weight_][1],numeric)) then

VARI:=VARI union {p[weight_][1]} fi;

if not(type(p[weight_][2],numeric)) then

VARI:=VARI union {p[weight_][2]} fi;

od;

for c in X[curves_] do VARI:= VARI union {c[weight_]} od;

other:= VARI minus (cusp union triple);

VARI:= [seq(cusp[i], i=1..nops(cusp)),

seq(triple[i], i=1..nops(triple)),

seq(other[i], i=1..nops(other))];

VARI:=[VARI, convert(cusp,list), convert(triple,list)]:

###################

print(‘Picard ==> INEQualities, EQUAtions, VARIables, SOLUtions‘);

print(‘VARI: ‘, VARI);

A := linalg[genmatrix](EQUA[1], VARI[1]);

AB:= linalg[genmatrix](EQUA[1], VARI[1], flag);

print(‘#vars, #cusps, rank(Lin), rank(Lin+)‘

,nops(VARI[1]), nops(VARI[2]), linalg[rank](A), linalg[rank](AB));

SOLU:= solve(convert(EQUA[1],set));

print(‘SOLU: ‘, SOLU);

end:

#### SOME HELP FUNCTIONS ######

#############

resoltosing := proc(XX) local TmpSum, b, a;

## [b1,b2,b3,b4,b5,...] ==> <d,e>

if nargs=0 then RETURN(‘usage: resoltosing([b1,b2,b3,b4,b5,...])‘) fi;

b := nops(XX):

if b = 1 then TmpSum := XX[1];

else

TmpSum :=XX[b]:

for a from 1 to (b-1) do TmpSum := XX[b-a] - 1/TmpSum; od; fi;

if numer(TmpSum) = 1 then [1,0];

else [numer(TmpSum), denom(TmpSum)] fi;

end:

###################

resoltoEDHsum := proc(B) local l,Tr,de,ep,i;

## [b1,b2,b3,b4,b5 ...] ==> 1/3*(3*l + Tr -e/d - ep/d)

l:= nops(B);

Tr:= -sum(’B[i]’, ’i’=1..l);

de := resoltosing(B);

ep := etoeprim(de);

1/3*(3*l + Tr -de[2]/de[1] - ep/de[1]);

end:
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#########################

etoeprim := proc(de) local e; ## <d,e> ==> e’

if nargs=0 then RETURN(‘usage: etoeprim([d,e]) ==> e’‘) fi;

if de[2] = 0 then e := 0;

elif de[2] = 1 then e := 1;

elif type(de[2],posint) and de[2] >1 then

e := subs(msolve(de[2]*XXX=1,de[1]),’XXX’);

else ERROR(‘something wrong with‘, de);

fi;

eval(e);

end:

# end of Package Picard

#### Data for Apollonius Configuration

# infolevel[orbital]:=10;

orbital(C0,type=curv,init=[2,-2],member={S1,S2,S3},weight=c0) ;

orbital(C1,type=curv,init=[2,-1],member={T1,P2,P3},weight=c1);

orbital(C2,type=curv,init=[2,-1],member={T2,P1,P3},weight=c2);

orbital(C3,type=curv,init=[2,-1],member={T3,P1,P2},weight=c3);

orbital(E1,type=curv,init=[2,-1],member={R1,T1,S1},weight=e1);

orbital(E2,type=curv,init=[2,-1],member={R2,T2,S2},weight=e2);

orbital(E3,type=curv,init=[2,-1],member={R3,T3,S3},weight=e3);

orbital(R1,type=abel,resol=[2],member=[E1],weight=[e1,1]);

orbital(R2,type=abel,resol=[2],member=[E2],weight=[e2,1]);

orbital(R3,type=abel,resol=[2],member=[E3],weight=[e3,1]);

orbital(X,type=surf,init=[6,-2],member=[{C0,C1,C2,C3,E1,E2,E3}, {}]);

maincheckorbital(X); mainproporinv(X);

makesingular(cusp,X,{E1,E2,E3}); makeequations(X);

showsolution(X,{c0=1/4,c1=1/4,c2=1/4,c3=1/4});

cleanorbital(X);

makesingular(cusp,X,{E1,E2}); makesingular(triple,X,{E3});

makeequations(X); showsolution(X,{c0=1/3,c1=1/6,c2=1/6,c3=1/2,e3=1/3});

cleanorbital(X); makesingular(cusp,X,{E1});

makesingular(triple,X,{E2,E3}); makeequations(X);

showsolution(X,{c0=1/3,c1=1/6,c2=1/3,c3=1/3,e2=1/6,e3=1/6});

cleanorbital(X);

makesingular(triple,X,{E1,E2,E3}); makeequations(X);

showsolution(X,{c0=1/3,c1=1/4,c2=1/4,c3=1/3,e1=1/12,e2=1/12,e3=1/6});
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[BPV] Barth, W., Peters, C., van de Ven, A.: Compact complex surfaces, Erg. d. Mathem., Springer,
Berlin, 1984

[Bri] Brieskorn, E.: Rationale Singularitäten komplexer Flächen, Inv. math. 4 (1967), 336 - 358
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