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Abstract. Between tradition (Hilbert’s 12th Problem) and actual challenges
(coding theory) we attack infinite two-dimensional Galois theory. From a num-
ber theoretic point of view we work over ℚ(𝑥). Geometrically, one has to do
with towers of Shimura surfaces and Shimura curves on them. We construct
and investigate a tower of rational Picard modular surfaces with Galois groups
isomorphic to the (double) octahedron group and of their (orbitally) uni-
formizing arithmetic groups acting on the complex 2-dimensional unit ball 𝔹.
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1. Introduction

The main results are dedicated to a natural congruence subgroup Γ(2) of the full
Picard modular group Γ of Gauß numbers. From the number theoretic side it is
interesting, that this infinite group is finitely generated by special elements of order
two. More precisely we can choose as generator system a (finite) set of reflections.
In number theory such elements are comparable with “inertia elements” generating
inertia groups of a Galois covering. The proof is based on a strong geometric result:
We need the fine classification of the (Baily-Borel compactified) quotient surface

Γ̂(2)∖𝔹. It turns out, that it is a nice blowing up of the projective plane at triple and
quadruple points of the very classical harmonic configuration of lines. We mention
that this is the first precise classification of a Picard modular surface of a natural
congruence subgroup. Along an easy correspondence the harmonic configuration
changes to the globe configuration with equator and two meridians meeting each
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other in six (elliptic) cusp singularities, see the picture at the end of Section 6. On
this way we visualized the octahedral action of the factor Galois group Γ/Γ(2). In

Galois towers between the surfaces Γ̂(2)∖𝔹 and Γ̂∖𝔹 we discover a classical orbital
ball quotient surface of the PTDM-list (Picard, Terada, Mostow, Deligne), which
was also published in Hirzebruch’s (and other’s) monograph [BHH]. On the one
hand we need this del Pezzo surface for proving our results. On the other hand we
found the arithmetic group uniformizing this orbital surface. It is a Picard modular
congruence subgroup. The precise description is important for the further work
with the Picard modular forms of this group found by H. Shiga and his team, see
[KS], [Mat]. In the same manner we find also the uniformizing arithmetic group of
the first surface (with a new line configuration) sitting in the infinite Galois-tower
of orbital (plane) ball quotient surfaces constructed by Uludag [Ul]. It allows to
work with algebraic equations for Shimura curves, which are important in coding
theory.

2. Picard modular varieties and Galois-Reflection towers

Let 𝑉 be the vector space ℂ𝑛+1 endowed with hermitian metric ⟨., .⟩ of signature
(𝑛, 1). Explicitly we will work with the diagonal representation⎛

⎝
1 0 . . .
0 1 . . .

.
.

. . 1

. . −1

⎞
⎠ .

For 𝑣 ∈ 𝑉 we call ⟨𝑣, 𝑣⟩ the norm of 𝑣. The space of all vectors with negative
(positive) norms is denoted by 𝑉 − (𝑉 +). The image ℙ𝑉 − of 𝑉 − in ℙ𝑉 = ℙ𝑛 is the
complex 𝑛-dimensional unit ball denoted by 𝔹𝑛. The unitary group 𝕌((𝑛, 1),ℂ)
acts transitively on it.

Now let 𝐾 be an imaginary quadratic number field, 𝒪𝐾 its ring of integers.

Definition 2.1. The arithmetic subgroup Γ𝐾 = 𝕌((𝑛, 1),𝒪𝐾) is called the full
Picard modular group (of 𝐾, of dimension 𝑛). Each subgroup Γ of 𝕌((𝑛, 1),ℂ)
commensurable with Γ𝐾 is called Picard modular group.

Let 𝔞 be an ideal of 𝒪𝐾 , closed under complex conjugation. Then, over the
finite factor ring 𝐴 = 𝒪𝐾/𝔞, the finite unitary group Γ𝐴 = 𝕌((𝑛, 1),𝒪𝐾/𝔞) is well
defined together with the reduction (group) morphism 𝜌𝔞 : Γ𝐾 −→ Γ𝐴. The kernel
of 𝜌𝔞 is denoted by Γ𝐾(𝔞).

Definitions 2.2. This group is called the congruence subgroup of the ideal 𝔞 in
Γ𝐾 . A subgroup Γ of Γ𝐾 is called a (Picard modular) congruence subgroup, iff it
contains a congruence subgroup Γ𝐾(𝔞). If 𝔞 is a principal ideal (𝛼), then we get a
principal congruence subgroup Γ𝐾(𝛼). For any natural number 𝑎 we call Γ𝐾(𝑎) a
natural congruence subgroup of Γ𝐾 . Intersecting the above subgroups with a given
Picard modular group Γ, we get (principal, natural) congruence subgroups Γ(𝔞),
Γ(𝛼), Γ(𝑎) of Γ.
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Remark 2.3. The full Picard modular group appears also as Γ𝐾(1) now. More
generally, we have to identify the groups Γ(1) and Γ.

The ball quotients Γ∖𝔹𝑛 are quasiprojective. They have a minimal algebraic

compactification Γ̂∖𝔹𝑛 constructed by Baily and Borel in [BB]. The authors proved
that these compactifications are normal projective complex varieties. We call them
Baily-Borel compactifications. In the Picard modular cases the Baily-Borel com-
pactifications consist of finitely many points, called cusp singularities or cusp
points. It may happen that such point is a regular one.

The Picard modular groups of a fixed imaginary quadratic number field 𝐾
act also on the hermitian 𝒪𝐾-lattice Λ = (𝒪𝐾)𝑛+1 ⊂ 𝑉 .
Definition 2.4. Let 𝑐 ∈ Λ be a primitive positive vector and 𝑐⊥ its orthogonal
complement in 𝑉 . It is a hermitian subspace of 𝑉 of signature (𝑛 − 1, 1). The
intersection

𝔻𝑐 := ℙ𝑐⊥ ∩ 𝔹𝑛

is isomorphic to 𝔹𝑛−1. We call it an arithmetic hyperball of 𝔹𝑛. Arithmetic hyper-
balls of 𝔹2 are called arithmetic subdiscs.

Take all elements of Γ acting on 𝔻𝑐:

Γ𝑐 := {𝛾 ∈ Γ; 𝛾(𝔻𝑐) = 𝔻𝑐}.
This is an arithmetic group. The image 𝑝(𝔻𝑐) along the quotient projection 𝑝 :
𝔹𝑛 −→ Γ∖𝔹𝑛 is an algebraic subvariety 𝐻𝑐 of Γ∖𝔹𝑛 of codimension 1.

Definition 2.5. The algebraic subvarieties 𝐻𝑐 are called arithmetic hypersurfaces
of the Picard modular variety Γ∖𝔹𝑛. The same notion is used for the compactifi-
cations. The norm 𝑛(𝐻𝑐) of 𝐻𝑐 is defined as 𝑛(𝑐).

The analytic closure of 𝐻𝑐 on the Baily-Borel compactification Γ̂∖𝔹𝑛 is de-

noted by 𝐻̂𝑐. Around general points the quotient variety Γ𝑐∖𝔻𝑐 coincides with
𝐻𝑐 = Γ∖𝔻𝑐. More precisely, we have normalizations

Γ𝑐∖𝔻𝑐 −→ Γ∖𝔻𝑐 = 𝐻𝑐

Γ̂𝑐∖𝔻𝑐 −→ Γ̂∖𝔻𝑐 = 𝐻̂𝑐.

For the proof we refer to [BSA] IV.4, where it is given for the surface case
𝑛 = 2. It is easily seen, that it works also in general dimensions 𝑛.

Definition 2.6. A non-trivial element of finite order 𝜎 ∈ 𝕌((𝑛, 1),ℂ) is called a
reflection iff there is a positive vector 𝑐 ∈ 𝑉 such that 𝑉𝑐 := 𝑐⊥ is the eigenspace
of 𝜎 of eigenvalue 1. If 𝜎 belongs to the Picard modular group Γ, then we call it a
Γ-reflection.

Remark 2.7. Some authors call them “quasi reflections”. Only in the order 2 cases
they omit “quasi”.
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Looking at the characteristic polynomial of 𝜎 we see that the eigenvector 𝑐
belongs to 𝐾𝑛+1 in the Picard case in 2.6. We can and will choose 𝑐 primitive in
Λ = 𝒪𝑛+1. Then it is clear that 𝜎 acts identically on the arithmetic hyperball

𝔻𝜎 := 𝔻𝑐 = ℙ𝑉𝑐 ∩ 𝔹𝑛

of 𝔹𝑛. We call such 𝔻𝑐 a Γ-reflection subball of 𝔹𝑛, or a Γ-reflection disc in the
surface case 𝑛 = 2.

Definition 2.8. The hypersurface 𝐻𝑐 of the primitive eigenvector 𝑐 = 𝑐(𝜎) of a
Γ-reflection 𝜎 is called a Γ-reflection hypersurface. In the two-dimensional case we
call it Γ-reflection curve.

Fact. The irreducible hypersurface components of the branch locus of the quotient
projection 𝑝 : 𝔹𝑛 → Γ∖𝔹𝑛 are precisely the Γ-reflection hypersurfaces.

Let Γ′ be a normal subgroup of finite index of the Picard modular group Γ.
We do not change notations, if such lattices doesn’t act effectively on 𝔹𝑛. We keep
the effectivization (= projectivization) in mind. We do the same for the Galois
group 𝐺 := Γ/Γ′ of the covering

Γ′∖𝔹 −→ Γ∖𝔹. (1)

Definition 2.9. This finite morphism (1) is called a Galois-Reflection covering iff
𝐺 is generated by Γ′-cosets of some Γ-reflections. We call 𝐺 in this case a Galois-
Reflection group.

In pure ball lattice terms this means that

Γ = ⟨Γ′, 𝜎1, . . . , 𝜎𝑘⟩ (2)

for suitable reflections 𝜎𝑖, i=1,. . . ,k.

We want to prove

Proposition 2.10. If Γ∖𝔹 is simply-connected and smooth, then (1) is a Galois-
Reflection covering for each normal sublattice Γ′ of Γ.

This can be easily deduced from the following

Theorem 2.11. If Γ∖𝔹 is simply-connected, then Γ is generated by finitely many
elements of finite order (torsion elements). If, moreover, the Picard modular variety
Γ∖𝔹 is smooth, then Γ is generated by finitely many reflections.

For the proof we need first the following

Theorem 2.12 ((Armstrong, [Ar] 1968)). Let 𝐺 be a discrete group of homeomor-
phisms acting on a path-wise connected, simply-connected, locally compact metric
space 𝑋 and 𝐻 the (normal) subgroup generated by the stabilizer groups 𝐺𝑥 of all
points 𝑥 ∈ 𝑋. Then 𝐺/𝐻 is the fundamental group of the (topological) quotient
space 𝑋/𝐺.
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Proof of Theorem 2.11. We substitute Γ,𝔹, 𝑇 𝑜𝑟Γ for 𝐺,𝑋,𝐻 in Armstrong’s The-
orem. It follows that Γ/𝑇𝑜𝑟Γ is the fundamental group of the quotient variety Γ∖𝔹.
If it is 1, then Γ/𝑇𝑜𝑟 Γ = 1. This means that Γ is generated by all its torsion el-
ements. These elements are finite order. Now we remember that each arithmetic
group is finitely generated, by a theorem of Borel [Bo]. All generators are products
of finitely many torsion elements. So we can generate Γ by finitely many torsion
elements. This proves the first part of Theorem 2.11.

For the second part, we look at the stabilizers Γ𝑥, 𝑥 ∈ 𝔹𝑛. These are finite
groups. Claude Chevalley proved in [Ch] that the image point 𝑝(𝑥) ∈ Γ∖𝔹𝑛 is
regular, if and only if Γ𝑥 is generated by reflections. On the other hand, each
torsion element of Γ has a fixed point 𝑥 ∈ 𝔹𝑛. Therefore Tor Γ is generated by
reflections, if Γ∖𝔹𝑛 is smooth. So the second part of Theorem 2.11 follows now
from the first. □
Definition 2.13. Let

Γ𝑁 ⊲ ⋅ ⋅ ⋅ ⊲ Γ𝑖+1 ⊲ Γ𝑖 ⊲ ⋅ ⋅ ⋅ ⊲ Γ1 ⊆ Γ (3)

be a normal series of subgroups of finite index of the Picard modular group Γ. We
call it a Γ-reflection series, if Γ𝑖 is generated by Γ𝑖+1 and finitely many reflections
for each in (3) occurring pair (𝑖 + 1, 𝑖). The corresponding Galois tower of finite
Galois coverings

Γ𝑁∖𝔹𝑛 → ⋅ ⋅ ⋅ → Γ𝑖+1∖𝔹𝑛 −→ Γ𝑖∖𝔹𝑛 → ⋅ ⋅ ⋅ → Γ1∖𝔹𝑛, (4)

with the normal factors Γ𝑖/Γ𝑖+1 as Galois groups, is then called a Galois-Reflection
tower (attached to the normal series (3)).

In this case each map of the sequence is a Galois-Reflection covering with
the normal factors Γ𝑖/Γ𝑖+1 as Galois groups. The extension of the definition to
(Baily-Borel or other) compactificatons should be clear. It is left to the reader.

Theorem 2.14. If all members, except for Γ𝑁∖𝔹𝑛, in the covering tower (4) at-
tached to (3) are simply-connected smooth varieties, then it is a Galois-Reflection
tower.

Proof. We have to show that each covering of the tower has the Galois-Reflection
property. We refer to Proposition 2.10. □

Moreover, we call an infinite tower

𝔹𝑛 → ⋅ ⋅ ⋅ → Γ𝑖+1∖𝔹𝑛 −→ Γ𝑖∖𝔹𝑛 → ⋅ ⋅ ⋅ → Γ1∖𝔹𝑛, (5)

a Galois-Reflection tower, if all occurring ball lattices Γ𝑖 are generated by reflec-
tions.

Example 2.15. Uludag constructed in [Ul] an infinite tower

⋅ ⋅ ⋅ → ℙ2 → ℙ2 → ⋅ ⋅ ⋅ → ℙ2 → ℙ2 (6)

of ball quotient planes ℙ2 = Γ̂𝑖∖𝔹2. It is not clear until now that the Γ𝑖’s can be
chosen as infinite normal series. We know only the existence of the ball lattices
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Γ𝑖, 𝑖 = 1, 2, 3, . . . , and that the successive coverings in (6) have the Klein’s 4-

group 𝑍2 × 𝑍2 as Galois group. The last member is the orbital ℙ2 = ˆΓ(1− 𝑖)∖𝔹
with “Apollonius divisor”, supported by a quadric and three tangents as orbital
branch divisor of the ball covering. We refer to [HPV] or [BMG], first appearance
of the Appolonius picture in [SY]. In [HPV], [BMG] we proved that the congruence
subgroup Γ(1− 𝑖) is the uniformizing ball lattice, with the full Picard-Gauß lattice
Γ = Γ(1) := 𝕊𝕌((2, 1),ℤ[𝑖]). By Theorem 2.11 it is true that all ball lattices Γ𝑖 in
this example are generated by reflections.

We consider a Γ-reflection covering as in 2.9. We want to construct a set of
reflections whose Γ′-cosets generate the Galois group 𝐺 = Γ/Γ′. For this purpose
we consider all 𝐾-arithmetic subballs 𝔻 of 𝔹𝑛. By definition, these are the arith-
metic subballs for our fixed imaginary-quadratic field 𝐾, see Definition 2.4. Such
𝔻 is a Γ-reflection if and only if the finite cyclic group

𝑍Γ(𝔻) = {𝜎 ∈ Γ;𝜎∣𝔻 = 𝑖𝑑𝔻},
called centralizer group of Γ at 𝔻, is not trivial. In this case the image 𝐻 of 𝔻
on Γ∖𝔹𝑛 belongs to the branch divisor, and the ramification index there coincides
with #𝑍Γ(𝔻).

Now let Γ′ be a subgroup of finite index of Γ. Then we dispose on a commu-
tative diagram

𝔹𝑛 𝔹𝑛

Γ′∖𝔹𝑛 Γ∖𝔹𝑛

�=

�

𝑝′

�

𝑝

�
𝑓

of analytic maps, where 𝑓 is finite, and the verticals are locally finite. With 𝐻 ′ :=
𝑝′(𝔻), it restricts to

𝔻 𝔻

𝐻 ′ 𝐻 .

�=

� �
�

The covering 𝑓 is branched along H, if and only if 𝑍 ′ := 𝑍Γ′(𝔻) is a honest (cyclic)
subgroup of 𝑍. The ramification order of 𝑓 at 𝐻 ′ is equal to the index [𝑍 : 𝑍 ′].

Now we see a practical way to get generating reflection elements 𝜎𝑖 of the
Galois group 𝑓 , if it is a Galois-reflection covering as described in (2). We have to
know the components 𝐻 of the branch divisor of 𝑓 . Then we must find a reflection
subball 𝔻 = 𝔻𝜎 ⊂ 𝔹𝑛 projecting onto 𝐻 along 𝑝 as above. Then 𝜎 is one of the
generating 𝜎𝑖 you look for. Now we change to the next branch divisor component
to find the next of the generating reflections. It is helpful to know the order of the
Galois group 𝐺 of 𝑓 . Then one can compare group orders of 𝐺 = Γ/Γ′ (assumed to
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be known) and of 𝐺′
𝑖 := Γ/⟨Γ′, 𝜎1, . . . , 𝜎𝑖⟩ using all the reflections already found.

One has to stop the procedure, if both group orders coincide. If Γ′ = Γ(𝔞) is a
congruence subgroup of Γ, then we calculate the orders of 𝐺′

𝑖 modulo the ideal 𝔞
by a computer program, e.g., MAPLE.

3. The level 2 Reflection tower

From now on we restrict ourselves to the second (complex) dimension 𝑛 = 2. We
write 𝔹 for the complex 2-dimensional unit ball 𝔹2. Moreover we concentrate our
attention to the Gauß number field 𝐾 = ℚ(𝑖).

A) The Galois-Reflection covering of Γ(1 − 𝒊) ⊂ Γ

For Γ = 𝕊𝕌((2, 1),ℤ[𝑖]) we want to construct reflection generators of

Γ(1)/Γ(1− 𝑖) ⊆ 𝕆(3,𝔽2) ∼= 𝑆3, (7)

where 𝔽2 = ℤ/2ℤ denotes the primitive field of characteristic 2. We take two
primitive elements of Λ = ℤ[𝑖]3 of norm 2, namely

𝑎 = (1 + 𝑖, 1, 1), 𝑏 = (1, 𝑖, 0).

We look for a reflection with eigenvector 𝑎 of eigenvalue −1. It sends each 𝑧 ∈ 𝑉 =
ℂ3 to 𝑧− < 𝑧, 𝑎 > 𝑎. For explicit Γ-representations we refer to the appendix Section
7. It turns out that both reflections generate a subgroup Σ3 of 𝕊𝕌((2, 1),ℤ[𝑖])
isomorphic to 𝑆3. Especially, the inclusion in (7) is an equality.

It is easy to find ℂ-bases of the orthogonal complements 𝑎⊥ or 𝑏⊥ in 𝑉 ,
respectively. Via projectivization we get explicitly the Γ-reflection discs

𝔻𝑎 = ℙ𝑎⊥ ∩ 𝔹 , 𝔻𝑏 = ℙ𝑏⊥ ∩ 𝔹.

These linear discs go through (1 : 0 : 1 − 𝑖) or (0 : 0 : 1) in 𝔹 ⊂ ℙ2, respectively,
and intersect each other in 𝑃 = (𝑖 : 1 : 2 + 𝑖). This is the common fixed point of
Σ3. Conversely, Σ3 is the isotropy group of Γ at 𝑃 .

The Baily-Borel compactification ˆΓ(1− 𝑖)∖𝔹 is ℙ2. It has been determined in
[HPV], [BMG]. More precisely, this orbital quotient surface is a pair (ℙ2; 4𝐶0 +
⋅ ⋅ ⋅ + 4𝐶3), where 𝐶0 is an 𝑆3-invariant quadric, and 𝐶1, 𝐶2, 𝐶3 are three of its
tangent lines. The three (Baily-Borel) compactifying cusp points are the touch
points of the tangents and the quadric. Look at Picture 5 in the later Section 5.
The coefficients 4 denote the branch indices of each curve 𝐶𝑖 along the locally
finite quotient covering 𝔹→ ℙ2∖{3 points}. Especially, Γ(1−𝑖)∖𝔹 is smooth. From
Theorem 2.11 it follows now that Γ(1− 𝑖) is generated by finitely many reflections.
Together with 7 and the above reflection representation of 𝑆3-generators, we see
altogether that Γ itself is generated by finitely many reflections. This doesn’t

follow directly from Theorem 2.11, because Γ̂∖𝔹 has a surface singularity, namely
the image point of 𝑃 = (𝑖 : 1 : 2 + 𝑖) ∈ 𝔹 on the quotient surface. This is the only
singularity there, see [BSA], Chapter V, §5.3 (especially, point 𝑃2 in Figure 5.3.7).
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This shows that surface smoothness is not necessary for the existence of finitely
many reflections generating the corresponding ball lattice.

B) The Galois-Reflection covering of Γ(2) ⊲ Γ(1 − 𝒊)

We continue the above Γ-example with the consideration of the natural congruence
subgroup Γ(2). In [HPV], Theorem 7.2 we proved that all torsion elements of Γ(2)
have order 2. Moreover, they all are squares of Γ(1− 𝑖)-elements of order 4. Each
isotropy group of Γ(1− 𝑖)-elliptic points is generated by two Γ(1− 𝑖)-reflections of
order 4. Each non-reflection torsion element 𝜏 ∈ Γ(1−𝑖) of order 4 fixes a(n elliptic)
point, say 𝑄 ∈ 𝔹. It turns out that 𝜏 is the product of two Γ(1 − 𝑖)𝑄-generating
reflections. So we have

Γ(1− 𝑖)𝑄 ∼= 𝑍4 × 𝑍4, with 𝑍𝑑 := (ℤ/𝑑ℤ,+).

Conversely, all squares of order 4 elements belong to Γ(2). In [HPV], Proposition
8.3, we determined the index as [Γ(1 − 𝑖) : Γ(2)] = 8. The diagonal reflections

𝜎1 := diag(𝑖, 1, 1), 𝜎2 := diag(1, 𝑖, 1)

have the coordinate reflection discs 𝔻2 : 𝑧2 = 0 or 𝔻1 : 𝑧1 = 0, respectively. They
generate the isotropy group Γ(1 − 𝑖)𝑂, 𝑂 the zero coordinate point. Reduction
mod (1− 𝑖) yields the exact sequence

1 −→ 𝑍2 × 𝑍2 = Γ(2)𝑂 −→ 𝑍4 × 𝑍4 = Γ(1− 𝑖)𝑂 −→ Γ(1− 𝑖)/Γ(2).
The image group on the right has the same structure as the kernel, namely

𝐾4 := 𝑍2 × 𝑍2 ⊂ Γ(1− 𝑖)/Γ(2) (Klein’s Vierer-Gruppe).
Observe that the norm 1 vectors, whose ortho-complements determine the coordi-
nate reflection discs, are 𝔫1 = (0, 1, 0) or 𝔫2 = (1, 0, 0), respectively. We determine
a third reflection 𝜎0, which is incongruent mod 2 to the elements of ⟨𝜎1, 𝜎2⟩. For
this purpose we take the norm 1 vector 𝔫0 := (1, 1, 1). Then 𝜎0 is the (order 4)
reflection corresponding

𝑉 = ℂ3 ∋ 𝑣 �→ 𝑣 − (1− 𝑖)⟨𝑣, 𝔫0⟩𝔫0. (8)

For its Γ-representation we refer again to the appendix Section 7. The orthogonal
reflection disc 𝔻0 ⊂ 𝔹 has the linear equation 𝑧1 + 𝑧2 = 1.

The disc 𝔻0 projects along the quotient projection 𝔹 → ℙ2 to the quadric
𝐶0, and 𝔻1,𝔻2 to the tangents 𝐶1, 𝐶2 of the Apollonius configuration. For more
details we refer to [HPV], [BMG].

The reflections 𝜎0, 𝜎1, 𝜎2 generate mod 2 a subgroup of order 8 in Γ(1 −
𝑖)/Γ(2), which has the same order. Therefore we found the Galois group together
with Galois-Reflection generators of the covering Γ(2)∖𝔹→ Γ(1− 𝑖)∖𝔹:

𝑍2 ×𝐾4 = ⟨𝜎̄0, 𝜎̄1, 𝜎̄2⟩ = Γ(1− 𝑖)/Γ(2). (9)

In the next section we look for fine Kodaira classification of Γ̂(2)∖𝔹. This will
be managed step by step along Galois-Reflection coverings/towers along the ball
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lattices in the following commutative diagram of inclusions:

Γ(2) ⟨Γ(2), 𝜎1, 𝜎2⟩ =: Γ′′

Γ′ := ⟨Γ(2), 𝜎0⟩ Γ(1− 𝑖) .

�

� �
�

(10)

It reduces mod Γ(2) to the Galois group diagram of finite Galois coverings (on
the right):

1 𝐾4

𝑍2 𝑍2 ×𝐾4

�

� �
�

,

Γ̂(2)∖𝔹 Γ̂′′∖𝔹

Γ̂′∖𝔹 ˆΓ(1− 𝑖)∖𝔹 .

�

� �
�

(11)

C) The Galois-Reflection tower of Γ(2) ⊂ Γ

Composing A) and B) we have the normal series

Γ(2) ⊲ Γ′′ ⊲ Γ(1− 𝑖) ⊲ Γ(1) = Γ = 𝕊𝕌((2, 1),ℤ[𝑖]).

We can and will also Γ′′ substitute by Γ′.

Proposition 3.1.

i) The full Picard lattice Γ is generated by finitely many reflections.

ii) The quotient morphism Γ̂(2)∖𝔹→ Γ̂∖𝔹 is a Galois-Reflection covering.
iii) The Galois group Γ/Γ(2) is isomorphic to 𝑍2×𝑆4, where 𝑆4 is the symmetric

group of 4 elements.
iv) Altogether we dispose on the normal Galois-Reflection series

Γ(2) ⊲ Γ′ ⊲ Γ(1− 𝑖) ⊲ Γ

of the Galois-Reflection (covering) tower

Γ(2)∖𝔹 −→ Γ′∖𝔹 −→ Γ(1− 𝑖)∖𝔹 −→ Γ∖𝔹
with normal factors (Galois groups) 𝑍2, 𝐾4, 𝑆3, or of compositions:

𝑍2 ×𝐾4 ∼= 𝐺𝑎𝑙(Γ(2)∖𝔹→ Γ(1 − 𝑖)∖𝔹) , 𝑆4 ∼= 𝐺𝑎𝑙(Γ′∖𝔹→ Γ∖𝔹).
Proof. i) We know that Γ(1 − 𝑖)∖𝔹 is smooth as open part of ℙ2. Then, from
Theorem 2.11 follows that Γ(1 − 𝑖) is generated by finitely many reflections, say
𝜌1, . . . , 𝜌𝑘. With A) we get Γ, if we add (generators of) Σ to Γ(1 − 𝑖). With the
notations of A) we receive

Γ = ⟨𝜌1, . . . , 𝜌𝑘, 𝜎𝑎, 𝜎𝑏⟩.
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ii) Abstractly, this follows immediately from i). Explicitly we dispose on the
presentation

Γ/Γ(2) = ⟨𝜎0, 𝜎1, 𝜎2, 𝜎𝑎, 𝜎𝑏⟩ (12)

where 𝜎̄ denotes the Γ(2)-coset of 𝜎, and we use the reflections defined in A) and B).

iii) By direct computation using the explicit representations in appendix Sec-
tion 7 one checks first that 𝜎̄0 commutes with all the other four generators in (12).
Further direct computations yield isomorphic short exact sequences, where 𝐾4
below denotes the normal subgroup of all products of two disjoint transpositions
in the symmetric group 𝑆4.

⟨𝜎1, 𝜎2⟩ ⟨𝜎1, 𝜎2, 𝜎𝑎, 𝜎𝑏⟩ ⟨𝜎𝑎, 𝜎𝑏⟩

𝐾4 𝑆4 𝑆3 .

�

�

∣∣

�

�

∼

�

∼

� �

(13)

iv) For the 𝑆3-part look back to A), (7) with proven isomorphy. The 𝑍2×𝐾4
-part one can find in B), especially (11). □

For the next corollary we need a further reflection, namely the orthogonal
reflection of the norm-1 vector 𝔫3 = (1+ 𝑖, 0, 1). We find the corresponding order-4
reflection 𝜎3 in a similar manner as 𝜎0 in B). Its Γ-representation you can find in
the appendix Section 7 again.

Remark 3.2. The symmetric group 𝑆4 has a well-known representation as motion
group 𝕆 of the octahedron. With a 3-dimensionally drawn curve configuration in
Section 6 it will be geometrically visible.

Corollary 3.3.

1) The following two sets coincide:

{Γ(1− 𝑖)-reflection discs} = {𝔻𝑣; 𝑣 ∈ Λ a primitive norm-1 vector}.
2) The set of Γ(1−𝑖)-reflection discs on 𝔹 coincide with the set of Γ(2)-reflection
discs.

3) Each Γ(2)-reflection is a squares of a Γ(1− 𝑖) reflection of order 4.
4) The reflection disc 𝔻0 of 𝜎0 projects to the Apollonius quadric 𝐶0 along 𝑝 :

𝔹→ Γ(1 − 𝑖)∖𝔹.
5) For 𝑖 = 1, 2, 3 the reflection discs 𝔻𝑖 of 𝜎𝑖 project to the 3 Apollonius tangent
lines 𝐶1, 𝐶2, 𝐶3, respectively, along 𝑝.

6) The branch curve of the Galois covering

𝑓 : Γ̂(2)∖𝔹→ ˆΓ(1− 𝑖)∖𝔹 = ℙ2

is the Appollonius curve 𝐶0 + 𝐶1 + 𝐶2 + 𝐶3. The covering has ramification
index 2 over each component 𝐶𝑖.
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For a visualization we refer to Picture 5 in Section 5 again. The key of proof is the
following statement presented in [HPV],[BMG]:

Theorem 3.4. The Apollonius curve 𝐶0+𝐶1+𝐶2+𝐶3 is the (Baily-Borel compact-
ified) branch curve of 𝑝. More precisely, 4𝐶0+4𝐶1+4𝐶2+4𝐶3 is the orbital branch
divisor of 𝑝. This means that the branch order is 4 over all components 𝐶𝑖. All
reflections in Γ ∖Γ(1− 𝑖) have order 2. Each of them is Γ-conjugated to one of the
three reflections of Σ3. □

Proof of Corollary 3.3. 1) ⊆: If 𝔻 is a Γ(1−𝑖)-reflection, then it belongs, by defini-
tion, to the ramification locus of 𝑝 on 𝔹. This means, that its image 𝐶 belongs to the
branch locus. But then, by Theorem 3.4, it is one of the above 𝐶𝑗 , 𝑗 ∈ {1, . . . , 4}.
It follows that 𝔻 = 𝔻𝑣 belongs to the Γ(1− 𝑖)-orbit of the reflection disc 𝔻𝑗 of 𝜎𝑗 .
Then the normal vector v of 𝔻 belongs to the orbit Γ(1 − 𝑖)𝔫𝑗 . We conclude that
𝑛𝑜𝑟𝑚(𝑣) = 𝑛𝑜𝑟𝑚(𝔫𝑗) = 1.

⊇: If we start with a reflection disc 𝔻𝔫 of a norm-1 vector 𝔫 ∈ Λ, then we can
construct the order-4 reflection 𝜎𝔫 as we did in (8) for 𝜎0. It belongs to Γ(1 − 𝑖)
because Γ ∖ Γ(1 − 𝑖) contains only order-2 reflections.

2) ⊆: A Γ(1 − 𝑖)-reflection disc 𝔻 has a generating reflection 𝜎 of order 4.
Its square belongs to Γ(2) (easy congruence calculation with a Γ-representation).
Therefore 𝔻 is also a Γ(2)-reflection disc.

⊇: Obviously, by inclusion Γ(2) ⊂ Γ(1− 𝑖).
3) Let 𝑠 be a Γ(2)-reflection with reflection disc 𝔻. Since it is a Γ(1 − 𝑖)-

reflection disc, its reflection group has, by the proof of 1), a generating element 𝜎
of order 4. Therefore 𝑠 = 𝜎2.

4) The reflection disc 𝔻0 with 𝑝-image 𝐶0 has been constructed in [HPV], see
also [BMG].

5) The three other order-4 reflection discs 𝔻1,𝔻2,𝔻3 are neither Γ(1 − 𝑖)-
equivalent to 𝔻0 nor to each other, because their ortho-vectors 𝔫𝑖 are not. You can
check it simply with modulo 2 calculations. Therefore their 𝑝-images are 𝐶1, 𝐶2, 𝐶3,
respectively, for a suitable numeration. Namely, by the Theorem 3.4, there is no
other possibility.

6) We omit the cusp points and decompose 𝑝 in

𝔹

Γ(2)∖𝔹 Γ(1− 𝑖)∖𝔹 .
�

𝑝′

�
�
�
�
���

𝑝

�
𝑓

The quotient maps 𝑝′ and 𝑝 have the same ramification locus joining all reflection
discs of Γ(1 − 𝑖). Let 𝔻 be one of them, 𝐶′ = 𝑝′(𝔻), 𝐶 = 𝑝(𝔻). The ramification
orders of 𝑝′ and 𝑝 at 𝔻 coincide with the order of a generating Γ(2)- or Γ(1 − 𝑖)-
reflection at 𝔻, respectively. The former order is 2, the latter equal to 4; both
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by 3) and Theorem 3.4, which restricts the maximal Γ(1 − 𝑖)-reflection order to
4. Ramification indices 𝑣 behave multiplicatively along compositions of coverings.
Especially, we have

4 = 𝑣(𝔻→ 𝐶) = 𝑣(𝔻→ 𝐶 ′) ⋅ 𝑣(𝐶′ → 𝐶) = 2 ⋅ 𝑣(𝐶′ → 𝐶).

Now it is clear that 𝑣(𝐶′ → 𝐶) = 2. This happens iff 𝐶 belongs to branch locus
of 𝑝. This branch locus coincides with 𝐶0 + 𝐶1 + 𝐶2 + 𝐶3.

The corollary is proved. □

4. The harmonic model of Γ̂(2)∖𝔹
Our next goal is to obtain a fine Kodaira classification of the surface Γ̂(2)∖𝔹, based
on results of the previous two sections and from the works of K. Matsumoto [Mat],
T. Riedel [Ri] and M. Uludag [Ul].

In [Mat] and [Ri], Matsumoto and Riedel study a ball quotient surface Γ̂𝑀∖𝔹,
where Γ𝑀 is a subgroup of index 2 of Γ(1− 𝑖) and the degree 2 covering Γ̂𝑀∖𝔹→

ˆΓ(1− 𝑖)∖𝔹 is ramified exactly over the Apollonius’ quadric 𝐶0. On the other
hand Γ′′ = ⟨Γ(2), 𝜎1, 𝜎2⟩, Diagram (10), is also an index 2 subgroup of Γ(1 − 𝑖)
and the covering Γ̂′′∖𝔹 → ˆΓ(1− 𝑖)∖𝔹 has 𝐶0 as branch locus, Corollary 3.3.
Therefore, according to the Cyclic Cover Theorem, [EPD], the two coverings

Γ̂𝑀∖𝔹→ ˆΓ(1− 𝑖)∖𝔹 and Γ̂′′∖𝔹→ ˆΓ(1 − 𝑖)∖𝔹, being both of degree 2 with branch
locus 𝐶0, are the same, hence Γ𝑀 = Γ′′.

The next ball quotient surface we are interesting in is Γ̂𝑈∖𝔹. In [Ul], M.
Uludag has constructed an infinite tower of finite coverings of ball quotient sur-
faces, all of them equal to ℙ2. This particular surface, which we call Uludag’s
surface, is a part of the tower and is defined as a degree four covering of the Apol-
lonius’ ℙ2, ramified over the three tangent lines 𝐶1, 𝐶2, 𝐶3. We consider again the
group Γ′ = ⟨Γ(2), 𝜎0⟩ of index four in Γ(1 − 𝑖), Diagram (10). By Corollary 3.3,

Γ̂′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹 is a degree four covering with branch locus 𝐶1, 𝐶2, 𝐶3. Accord-
ing to the Extension Theorem of Grauert and Remmert, [GR], the two coverings

𝐺𝑈∖𝔹 → ˆΓ(1− 𝑖)∖𝔹 and Γ̂′∖𝔹 → ˆΓ(1 − 𝑖)∖𝔹, both of degree four with the same
unramified (affine) part and the same branch locus, are equal, wherefrom 𝐺𝑈 = Γ′.

Following results from the previous sections there are two ways to construct

Γ̂(2)∖𝔹 from ˆΓ(1− 𝑖)∖𝔹: as a degree four covering of Γ̂′′∖𝔹, or as a degree two

covering of the surface Γ̂′∖𝔹. The two lifts of the Apollonius ℙ2 are compositions
of coverings of degree 8, with corresponding Galois group for the whole covering
in each one of the cases 𝑍2×𝑍2×𝑍2, and are ramified exactly over the Apollonius
configuration. The Galois group Γ(1 − 𝑖)/Γ(2) is generated by 𝜎0, 𝜎1, 𝜎2. The

surface covering Γ̂′′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹 is of degree 2 with Galois group generated by

𝜎0 and ramified over 𝐶0, and Γ̂(2)∖𝔹 → Γ̂′′∖𝔹 is of degree 4 with corresponding
Galois group generated by 𝜎1, 𝜎2 and ramified over the preimages of the curves
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𝐶1, 𝐶2, 𝐶3 on Γ̂′′∖𝔹. On the other hand the covering Γ̂′∖𝔹 → ˆΓ(1− 𝑖)∖𝔹 is of
degree 4, ramified over 𝐶1, 𝐶2, 𝐶3, with Galois group generated by 𝜎1, 𝜎2, and that

of Γ̂(2)∖𝔹 → Γ̂′∖𝔹 is generated by 𝜎0 and the map is ramified over the preimage

of 𝐶0 on Γ̂′∖𝔹. Hence both paths lift the Apollonius ℙ2 to the surface Γ̂(2)∖𝔹 as
visualized by the following diagram:

Γ̂(2)∖𝔹 → Γ̂′′∖𝔹 (Matsumoto)
↓ ↓

(Uludag) Γ̂′∖𝔹 → ˆΓ(1− 𝑖)∖𝔹 (Apollonius).

In order to obtain the Kodaira classification of the surface Γ̂(2)∖𝔹, we need a
non singular model which can be obtained by the blow up of the cusps, and which
we denote with (Γ(2)∖𝔹)′. The aim is by series of blow downs to obtain from the

smooth model a minimal model for the surface Γ̂(2)∖𝔹.
In this way we come to the minimal rational surface ℙ2 together with a line

arrangement called the harmonic configuration, which is the image of the branch
divisor of (Γ(2)∖𝔹)′ with respect to the ball uniformization map. The harmonic
configuration is an highly symmetric arrangement, consisting of 9 lines through 7
points. It can be used for the construction of a quadruple of harmonic points in
ℙ2, well studied in the classical projective geometry, as an example in [Har2].

Harmonic Configuration

Picture 1
ℙ2

To show that Γ̂(2)∖𝔹 is a rational surface we use the following technical tools:

1. The Extension Theorem of Grauert and Remmert, [GR], Theorem 8, which
we apply in the following situation, where all varieties we consider are complex
and normal:
Let 𝑊 ∘ → 𝑉 ∘ be a finite covering and 𝑉 be a compactification, then there
exists a unique extension of 𝑊 ∘ → 𝑉 ∘ to a finite covering 𝑊 → 𝑉 .

𝑊 ∘ ↪→ 𝑊
↓ ↓
𝑉 ∘ ↪→ 𝑉
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2. Compatibility of finite coverings and blow ups.
This property of surface coverings, that finite coverings and blow ups com-
mute, follows from a celebrated theorem of Stein, Stein Factorization Theo-
rem, which can be found in [Har1], p. 280.

Next we come back to our particular surfaces and we consider the tower of
finite coverings

Γ̂(2)∖𝔹→ Γ̂′′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹,
corresponding to the Galois-Reflection tower of Γ(2)⊲Γ(1− 𝑖) (Diagr. (10), (11)).
The Galois groups are Γ(1− 𝑖)/Γ′′ = 𝑍2 and Γ′′/Γ(2) = 𝐾4, as shown in the last

chapter, and the branch locus for the composition covering Γ̂(2)∖𝔹→ ˆΓ(1− 𝑖)∖𝔹
is the Apollonius curve (Cor. 3.3).

The ball quotient Γ̂′′∖𝔹, as shown by Matsumoto and Riedel, is the orbital
surface𝑀 = (ℙ1×ℙ1, 4𝑉 ′

1 +4𝑉 ′
2 +4𝑉 ′

3 +4𝐻 ′
1+4𝐻 ′

2+4𝐻 ′
3+2𝐷′) with three cusp

points, which are intersection of more than two lines from the orbital divisor. If
we blow up the cusps we obtain the surface 𝑋 ′. According to Yoshida, [Yo], (p.
139), this is a projective algebraic surface, which can be also realized by a blow
up of four points of ℙ2 in general position, hence it is the del Pezzo surface of
degree 5. Considered as a blow up of four points of ℙ2, 𝑋 ′ has been also studied
by Bartels, Hirzebruch and Höfer in [BHH]. There they have shown, by proving
the proportionality law, that it is a Baily-Borel compactification of a ball quotient
surface (number 20 in their list, (p. 201)). The branch configuration on 𝑋 ′ with
respect to the natural ball projection is given by a configuration of ten lines, six
of them with branch index 4, one with 2, and three with ∞.

If we blow down 3 curves from 𝑋 ′, two with branch index 4 and one with 2,
we obtain [Yo] the orbital surface 𝑋 = (ℙ1 × ℙ1, 4𝑉1 + 4𝑉2 + 4𝐻1 + 4𝐻2), where
𝑉𝑖, 𝐻𝑖 𝑖 = 1, 2 denote vertical resp. horizontal lines. Therefore, 𝑋 is birationally

equivalent to the surface Γ̂′′∖𝔹.

4 4 4

4

∞

4

∞

𝑋

ℙ1 × ℙ1

4

4

4

4

4

4

2

∞

∞ ∞

𝑋 ′

Picture 2

4 4 4

4

4

4

2

𝑀

ℙ1 × ℙ1

Let (Γ(2)∖𝔹)′ be the surface obtained from Γ̂(2)∖𝔹 by blow up of the cusp
points. With cusp curves we denote the irreducible exceptional curves plugged in
for the cusp points, see [BSA].
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Lemma 4.1. The covering (Γ(2)∖𝔹)′ → 𝑋 ′ is unramified over the cusp curves in
the Hirzebruch’s orbital del Pezzo surface 𝑋 ′.

Proof. According to [Fe] the surface Γ̂(1)∖𝔹 has only one cusp, so the Galois

Group Γ(1)/Γ(2) acts transitively on the cusps set of Γ̂(2)∖𝔹, and transforms small
neighborhoods of a cusp in a neighborhood of a cusp again. Hence it is enough to
consider only the ball cusp point 𝜅 = (1 : 0 : 1). The canonical homomorphism
𝜙 : Γ(1 − 𝑖) → 𝐺 = Γ(1 − 𝑖)/Γ(2) induces for each point 𝑃 on 𝔹 a surjective
homomorphism of isotropy groups 𝜙𝑃 : Γ(1 − 𝑖)𝑃 → 𝐺𝑃 ′ , where 𝑃 ′ is the image

of 𝑃 on Γ̂(2)∖𝔹 [BSA], (4.6.2). The Galois group Γ(1 − 𝑖)/Γ(2) is generated by
𝜎0, 𝜎1, 𝜎2 (see (9)). The preimages of the 𝜎0, 𝜎1, 𝜎2 act on 𝜅 as 𝜎0(𝜅) = 𝜅,
𝜎1(𝜅) = (𝑖 : 0 : 1), and 𝜎2(𝜅) = 𝜅. The two cusp points 𝜅 = (1 : 0 : 1) and
(𝑖 : 0 : 1) are non equivalent modulo 2. Hence the image point 𝜅′ of the cusp 𝜅 on

Γ̂(2)∖𝔹 has an isotropy group ⟨𝜎0, 𝜎2⟩ ∼= 𝑍2 × 𝑍2.
Following [BSA], (4.5.3), the cusp curve 𝐿𝜅′ is a rational curve, because the

cusp group Γ(2)𝜅 is not torsion free, i.e., it contains a reflection, e.g., 𝜎22 .
We consider the covering tower

(Γ(2)∖𝔹)′ → (Γ′∖𝔹)′ → (Γ(1− 𝑖)∖𝔹)′,
and especially its restriction to the cusp curve 𝐿𝜅′ in order to show that it is not a
ramification curve. For this we study the action of the isotropy group of 𝜅′ on 𝐿𝜅′ .

𝐶0+𝐶1+𝐶2+𝐶3 is the branch divisor of 𝑝, (see Thm. 3.4), and Γ̂′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹
is a degree 4 covering branched along 𝐶1, 𝐶2, 𝐶3 [Ul]. According to [Ul] the quadric
𝐶0 has exactly 4 lines as preimages by the whole covering 𝑝, and 2 of them intersect
𝐿𝜅′ in different points. 𝜎0 acts identically on the preimages of 𝐶0 on (Γ(2)∖𝔹)′,
but the extension of the action of 𝜎0 in the tangential space of the intersection
points implies different reflections directions, so 𝜎0 is not the 𝑖𝑑 on 𝐿𝜅′ .

The group 𝐾4 = ⟨𝜎1, 𝜎2⟩ (see Prop. 2.1) acts transitively on the preimages

of 𝐶0 on Γ̂′∖𝔹. 𝜎0 fixes the intersection points of these curves with 𝐿, where
𝐿 is the corresponding to 𝜅 exceptional curve on (Γ′∖𝔹)′, and 𝜎2 interchanges
these intersection points, so does the composition 𝜎0𝜎2. The same is true for the
preimages of the intersection points on (Γ(2)∖𝔹)′. Hence 𝐿𝜅′ is not fixed by 𝜎0,
𝜎2 or their composition and is not a ramification curve, for the whole covering
(Γ(2)∖𝔹)′ → Γ(1− 𝑖)∖𝔹)′ and for every part extension. □

Now, it is clear that the orbital branch locus on𝑋 = ℙ1×ℙ1, transferred from
𝑋 ′, sits on fibres (see above Picture 2). In opposite to the orbital surfaces 𝑋 ′ and
𝑀 it is easy now to find the 𝐾4-covering of 𝑋 with prescribed weighted branch
curves. For this purpose we consider a rational quadric 𝑄 with 𝑄→ ℙ1 of degree
2, branched over 0 and ∞. The product 𝑄×𝑄→ ℙ1×ℙ1 is a degree four covering
with Galois group𝐾4, generated by 𝑔×𝑖𝑑 and 𝑖𝑑×𝑔, where ⟨𝑔⟩ is the Galois group
of 𝑄 → ℙ1. Because 𝑄 is birationally equivalent to the projective line, the above
covering is birationally equivalent to ℙ1 × ℙ1 → ℙ1 × ℙ1. The branch locus is the
orbital divisor 4𝑉1 + 4𝑉2 + 4𝐻1 + 4𝐻2 and is lifted as 2𝑉 0 + 2𝑉∞ + 2𝐻0 + 2𝐻∞
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with vertical lines 𝑉 0 and 𝑉∞ through 0 and∞, and the corresponding horizontal
lines 𝐻0 and 𝐻∞.

Conversely if we consider a 𝐾4 quotient of the surface 𝑄×𝑄 we obtain again
the surface 𝑋 .

(𝑄 ×𝑄)/𝐾4 = (𝑄/⟨𝑔⟩)× (𝑄/⟨𝑔⟩) ≃ ℙ1 × ℙ1.

This 𝐾4-covering of 𝑋 is denoted with 𝑌 .

𝑌

ℙ1 × ℙ1

Picture 3

ℙ1 × ℙ1

𝑋

We denote with 𝑌 ′, the surface obtained after a blow up of the 6 points,
which are intersection of more than 2 lines on 𝑌 , as shown in Picture 3.

Proposition 4.2. Γ̂(2)∖𝔹 is birationally equivalent to 𝑌 .

Proof. Consider the following diagram:

𝑌

�� ���
��

��
��

�

𝑋 𝑋 ′.��

Let 𝑌 ∘ be the surface 𝑌 without the line arrangement of 4 dashed and 6
dotted lines and 𝑋∘ the surface obtained from 𝑋 by removing the 4 dashed and 3
dotted lines, or from 𝑋 ′ again by removing the configuration of 10 curves. From
the fact that 𝑋 ′ is a compactification of 𝑋∘ it follows by the Extension Theorem
of Grauert and Remmert that the finite covering 𝑌 ∘ → 𝑋∘ can be extended in
an unique way (up to isomorphism) to the 𝐾4-covering 𝑌 ′′ → 𝑋 ′. Therefore,
𝑌 ′′ → 𝑋 ′ is the unique extension of the finite covering 𝑌 → 𝑋 , which completes
the above diagram.

Because of the compatibility of finite coverings with blow ups, the map 𝑌 ←
𝑌 ′′ is exactly the blow up of those points on 𝑌 , which lie over the 3 thick points
of 𝑋 , blown up by the map 𝑋 ← 𝑋 ′. This is exactly the definition of 𝑌 ′, hence
𝑌 ′′ = 𝑌 ′, wherefrom we obtain that 𝑌 ′ is a 𝐾4-covering of the Hirzebruch’s
surface 𝑋 ′.
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On the other hand let us consider the following diagram:

(Γ(2)∖𝔹)′

�� �����������

𝑋 𝑀.��

The Hirzebruch’s list, [BSA], p. 201, gives the branch locus for the 𝐾4-
covering (Γ(2)∖𝔹)′ → 𝑋 ′, consisting of 7 lines, 6 dashed and 1 black, as repre-
sented in Picture 2, all of ramification index 2. The 3 dotted lines, which complete
the picture are not branch curves according to Lemma 4.1.

Let 𝑋∘ be as above 𝑋 ′ without the line configuration of 10 curves and 𝑀∘

be 𝑀 without the 7 curves (6 dashed and 1 black, Pic. 2), then 𝑋∘ =𝑀∘. By the
Extension Theorem there exists an unique extension of 𝑌 ∘ → 𝑋∘ to a 𝐾4-covering
𝑌 ′ → 𝑋 ′. On the other hand (Γ(2)∖𝔹)∘ → 𝑋 ′, where (Γ(2)∖𝔹)∘ is (Γ(2)∖𝔹)′
without the line arrangement obtained by the 𝐾4-lift of the curve configuration
on 𝑋 ′, is again an extension of 𝑌 ∘ → 𝑀∘ = 𝑋∘, hence the both extensions are
the same, i.e., 𝑌 ′ = (Γ(2)∖𝔹)′.

As a consequence we obtain the following commutative diagram of surfaces,
where the vertical maps are 𝐾4 coverings and the horizontal are birational trans-
formations:

𝑌 ��� (Γ(2)∖𝔹)′ ��� Γ̂(2)∖𝔹
↓ ↓ ↓
𝑋 ��� 𝑋 ′ ��� 𝑀.

Therefore, the surfaces 𝑌 and Γ̂(2)∖𝔹 are birationally equivalent. The line
configuration of 10 curves on 𝑋 ′ is lifted as the arrangement of 16 lines, four
(black) of weight 2, six (dashed) of weight 2, six (dotted) of weight∞, which come

after blow up of the cusp of Γ̂(2)∖𝔹. □

With the results of the former proposition now we are able to prove the
following statement.

Theorem 4.3. (Γ(2)∖𝔹)′ is the surface obtained as a blow up of seven points on ℙ2.
The line arrangement on (Γ(2)∖𝔹)′ is the preimage of the harmonic configuration.
Proof. The surface (Γ(2)∖𝔹)′ can be obtained from 𝑌 by blow up of the six points,
which are intersection of at least three lines.

𝑌 itself is a model of Γ̂(2)∖𝔹 given by ℙ1 × ℙ1 together with the line con-
figuration 2𝑉 0 + 2𝑉∞ + 2𝐻0 + 2𝐻∞. By blow up of the intersection point of
two dashed lines and one dotted, in the line arrangement on 𝑌 , and afterwards
blow down of the dashed lines 𝑉∞ and 𝐻∞ going through this point one obtains
the projective plane. Hence (Γ(2)∖𝔹)′ can be constructed from ℙ2 by blowing up
the 7 thick points of the harmonic line configuration on ℙ2 as represented in the
following picture.
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Picture 4

(Γ(2)∖𝔹)′ Harmonic Configuration

ℙ2

□

At the end of this section we want to remark that the detailed study of the

Galois groups of the towers of surface coverings Γ̂(2)∖𝔹→ Γ̂′′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹 as

well as Γ̂(2)∖𝔹→ Γ̂′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹 proves that the natural congruence subgroup
Γ(2) is contained in the groups Γ′, studied by Hirzebruch, Matsumoto and Riedel,
and Γ′′, corresponding to the Uludag’s surface, which leads to the following result:

Corollary 4.4. The two groups Γ′ and Γ′′ are Picard congruence subgroups.

Corollary 4.5. The natural Picard congruence subgroup Γ(2) is generated by finitely
many order-2 reflections.

Proof. By Theorem 4.3 the quotient surface Γ(2)∖𝔹 is simply-connected. It is also
smooth. Now we apply the second statement of Theorem 2.11 to see that our
group is generated by finitely many reflections. At the begin of B) in Section 3 we
already remarked that Γ(2) contains only reflections of order 2. This finishes the
proof. □

5. Numerical space model

In this section we would like to compute a numerical model for Γ̂(2)∖𝔹. For this
we consider the covering

Γ̂(2)∖𝔹→ Γ̂′∖𝔹→ ˆΓ(1− 𝑖)∖𝔹,
from Diagram (11), with Galois groups Γ′/Γ(2) = 𝑍2 and Γ(1 − 𝑖)/Γ′ = 𝐾4
(Diagram (10)).

ˆΓ(1− 𝑖)∖𝔹 is the orbital surface (ℙ2, 4𝐶0 + 4𝐶1 + 4𝐶2 + 4𝐶3). The three
tangents 𝐶1, 𝐶2, 𝐶3 can be given for example by the equations 𝑥′ = 0, 𝑦′ =
0, 𝑧′ = 0 and the quadric 𝐶0 by (𝑥′ + 𝑦′ − 𝑧′)2 − 4𝑥′𝑦′ = 0. The Uludag’s surface

Γ̂′∖𝔹 is the orbital surface (ℙ2, 4𝐺1 + 4𝐺2 + 4𝐺3 + 4𝐺4 + 2𝐵1 + 2𝐵2 + 2𝐵3). It
is a degree four covering of the Apollonius ℙ2, ramified along the tangents. 𝐶0 is
lifted by this covering as the curve (𝑥+ 𝑦− 𝑧)(𝑥+ 𝑦+ 𝑧)(𝑥− 𝑦+ 𝑧)(𝑥− 𝑦− 𝑧) = 0,
where each irreducible component is of branch index 4. The tangents, defining the
branch locus, are lifted as lines of branch index 2.
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4

44

4

Apollonius Configuration

ℙ2

2

44 2

2
4 4

ℙ2
Picture 5

Uludag’s Configuration

ℙ2

The Picard group of ℙ2 is generated by a line, hence the divisor class of the
four lines𝐺1+𝐺2+𝐺3+𝐺4 is divisible by 2 in 𝑃𝑖𝑐(ℙ2). Then according to the cyclic
cover theorem, see, e.g., [EPD], there exists exactly one degree two covering of the

Uludag’s surface, ramified along these lines and this surface is exactly Γ̂(2)∖𝔹.
The covering Γ̂(2)∖𝔹 → ℙ2-Uludag’s is cyclic with Galois group 𝑍2. The surface

Γ̂(2)∖𝔹 is obtained as a normalisation of ℙ2 along the function fields extensions

ℂ(ℙ2) ⊂ ℂ(Γ̂(2)∖𝔹). Using Kummer extensions theory [Ne] we obtain ℂ(Γ̂(2)∖𝔹) =
ℂ(𝑥, 𝑦)(

√
𝛿), where 𝛿 = (𝑥 + 𝑦 − 1)(𝑥 + 𝑦 + 1)(𝑥 − 𝑦 + 1)(𝑥 − 𝑦 − 1) is the affine

divisor corresponding to the branch divisor of the covering Γ̂(2)∖𝔹→ ℙ2- Uludag’s.

If we set 𝑢2 = 𝛿, we obtain by projectivisation for the surface Γ̂(2)∖𝔹 the following
numerical model:

Γ̂(2)∖𝔹 : 𝑡2𝑢2 + 2𝑥2𝑡2 + 2𝑥2𝑦2 + 2𝑦2𝑡2 − 𝑡4 − 𝑥4 − 𝑦4 = 0.

This space model enables the computation of explicit equations for various
Shimura curves, important for the coding theory. In the central part of her doc-
toral thesis [Pet] the second author connects towers of such curves inside of our
octahedral Picard surface tower. They are constructed as quotients of “arithmetic
subdiscs” of the 2-ball.

6. The octahedral configuration of norm-1 curves

We call an orbital ball quotient surface Γ∖𝔹 (also its compactification) neat, if the
ball lattice Γ is neat. In this case 𝔹→ Γ∖𝔹 is a universal covering.

From Hirzebruch’s work in the 1980s, see, e.g., [Hi], and a systematic study
in [Ho04] we know that there exist coabelian neat ball lattices Γ. Coabelian means
that the quotient surface Γ∖𝔹 has an abelian surface as model. We found the
following general situation:

Let 𝐴 be an abelian surface, 𝑇 = 𝑇1 + ⋅ ⋅ ⋅ + 𝑇𝑘 a sum of elliptic curves 𝑇𝑖
on 𝐴 with pairwise normal crossings at intersection points. We denote by 𝑠 the
number #Sing(𝑇 ) of curve singularities of 𝑇 and set

𝑆𝑖 := Sing(𝑇 ) ∩ 𝑇𝑖 , 𝑠𝑖 := #𝑆𝑖; 𝑖 = 1, . . . , 𝑘.
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By the adjunction formula for curves on smooth surfaces, it is easy to see
that the selfintersection indices of elliptic curves on abelian surfaces vanishes. We
assume, that 𝑆𝑖 ∕= ∅ for all 𝑖. If we blow up each curve singularity of 𝑇 , we
get a surface 𝐴′ with 𝑠 exceptional lines of first kind. The proper transforms of
the 𝑇𝑖 on 𝐴′ we denote by the same symbol. They do not intersect each other
and have negative selfintersections. Therefore we can contract them all to elliptic
singularities. On this way we get a surface 𝐴 with 𝑘 singularities 𝜅̂𝑖. We put
together the whole construction in the following diagram:

𝐴 𝐴′ 𝐴

𝑇𝑖 𝑇𝑖 𝜅̂𝑖

� �

�=

� �

�

�
(14)

with vertical inclusions. We proved

Theorem 6.1 ([Ho04], Theorem 2.5). With the above notations/assumptons, 𝐴 is a

neat ball quotient surface Γ̂∖𝔹 with cusp singularities 𝜅̂𝑖, if and only if the relation
4𝑠 = 𝑠1 + ⋅ ⋅ ⋅+ 𝑠𝑘 (15)

is satisfied.

Now we start again from the biproduct ℙ1×ℙ1, endowed with three horizontal
lines and three verticals as drawn in Picture 3 of Section 4 (on the right, without
diagonal). We consider the (unique) 4-cyclic cover of ℙ1 branched over three points:
namely the elliptic CM-curve 𝐸 = ℂ/ℤ[𝑖] with cyclic automorphism group 𝑍4 of
order 4 generated by the 𝑖-multiplication. The corresponding Galois covering (with
intermediate step)

𝐸 −→ 𝐸/⟨−𝑖𝑑𝐸⟩ = ℙ1 −→ 𝐸/𝑍4 = ℙ1

is ramified at the 2-torsion points 𝑄0 = 𝑂, 𝑄2 of ramification order 4 and 𝑄1,
𝑄3 of ramification order 2. Their image points on ℙ1 are denoted by 𝑃0, 𝑃2 or
𝑃1, respectively, preserving indices. Taking bi-products we get a Galois covering
of surfaces with Galois group 𝑍4 × 𝑍4

𝐸 × 𝐸 −→ (𝐸 × 𝐸)/(𝑍4 × 𝑍4) = 𝐸/𝑍4 × 𝐸/𝑍4 = ℙ1 × ℙ1

with ramification curves 𝑄𝑖×𝐸, 𝐸×𝑄𝑗 , 𝑖, 𝑗 = 0, . . . , 3, and branch curves 𝑃𝑖×ℙ1,
ℙ1 × 𝑃𝑗 , 𝑖, 𝑗 = 0, . . . , 2. More precisely, the orbital branch divisor is

4 ⋅ 𝑃0 × ℙ1 + 4 ⋅ 𝑃2 × ℙ1 + 4 ⋅ ℙ1 × 𝑃0 + 4 ⋅ ℙ1 × 𝑃2 + 2 ⋅ 𝑃1 × ℙ1 + 2 ⋅ ℙ1 × 𝑃2.

The diagonal curve 𝐷 of ℙ1 × ℙ1 has 4 irreducible preimage curves 𝐷1, . . . , 𝐷4 on
𝐸 × 𝐸. These are elliptic curves. So the whole divisor

𝑇 := 𝐷1 +𝐷2 +𝐷3 +𝐷4 +𝑄1 × 𝐸 +𝑄3 × 𝐸 + 𝐸 ×𝑄1 + 𝐸 ×𝑄3
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is a sum of 8 elliptic curves with

Sing(𝑇 ) = {𝑂,𝑄2 ×𝑄2, 𝑄1 ×𝑄1, 𝑄1 ×𝑄3, 𝑄3 ×𝑄1, 𝑄3 ×𝑄3}.
We count 𝑠 = 6 singular points, 4 of them on each 𝑇 -component 𝐷𝑖 and 2 on
each horizontal and vertical component. Altogether we see that the relation (15)
is satisfied:

4 ⋅ 6 = 4 + 4 + 4 + 4 + 2 + 2 + 2 + 2.

For more calculation details we refer to [Ho04], Example 4.6. It follows from Theo-
rem 6.1 that 𝐸×𝐸 is an abelian model of a neat ball quotient surface of a lattice Γ𝐸

with smooth compactification (𝐸 ×𝐸)′ = (Γ𝐸∖𝔹)′ received by blowing up the six
points of Sing(𝑇 ) ⊂ 𝐸 × 𝐸. Altogether we have the commutative Galois-covering
diagram of blow-ups/contractions:

𝐸 × 𝐸 (𝐸 × 𝐸)′ 𝐸 × 𝐸

ℙ1 × ℙ1 (Γ(2)∖𝔹)′ Γ̂(2)∖𝔹

ℙ1 × ℙ1 (Γ(1 − 𝑖)∖𝔹)′ ˆΓ(1− 𝑖)∖𝔹.

�

⟨−𝑖𝑑⟩×⟨−𝑖𝑑⟩ ∼=

�

�

𝑍2×𝑍2

�

�

�

�

�

𝐾4

�

�
� �

The upper row comes, as already mentioned, from Theorem 6.1. The partial di-
agram of middle and bottom rows was constructed in Section 4. Both parts are
joined as drawn, because the blown-up points of Sing(𝑇 ) have as image along
⟨−𝑖𝑑⟩ × ⟨−𝑖𝑑⟩ the six image points blown-up in the middle row to get (Γ(2)∖𝔹)′.

Altogether we have a Galois-Reflection tower

Γ𝐸∖𝔹→ Γ(2)∖𝔹→ Γ𝑀∖𝔹→ Γ(1− 𝑖)∖𝔹→ Γ∖𝔹
of Picard modular surfaces, which starts with a neat one of abelian type.

Let 𝑡 be the translation automorphism of 𝐸 ×𝐸 adding to each point 𝑄×𝑄
the 2-torsion point 𝑄1 ×𝑄1. We consider the isogeny

𝐸 × 𝐸 → (𝐸 × 𝐸)/⟨𝑡⟩ =: 𝐵.
It is easy to see that 𝑡 doesn’t move the divisor 𝑇 and the intersection points of their
components collected in Sing(𝑇 ). The image of the latter points on the abelian
surface 𝐵 consists of three points. The image of 𝑇 on 𝐵 consists of 3 elliptic curve
pairs. Each of the three points is intersection point of the 4 components of two such
pairs. We blow them up, and denote the arising surface by 𝐵′. We visualize the
transfer of the 6 (here black dotted) elliptic curves along the birational morphism
𝐵 ← 𝐵′:
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Picture 6

On this way we get the

Globe configuration on the abelian surface model 𝑩̂ = Γ̂𝑩∖𝔹:
With 𝑠 = 3 and 𝑠𝑖 = 2, 𝑖 = 1, . . . , 6 we see that the relation (15) is satisfied
again. Therefore, after blowing up the 3 intersection points, we get a neat ball
quotient surface compactified by the 6 elliptic curves. Contracting them we get a
surface 𝐵̂ with six cusp singularities painted as black points in Picture 7. Thereby
we arrange the (transfers of the) 3 (black) exceptional lines of this picture 3-
dimensionally as crossing circles on a globe, reflecting precisely their intersection
behaviour. Obviously, the six cusp points span a regular octahedron.

Picture 7

Excercise 6.2. Find with help of next section the octahedron motion group repre-
sentations (on ℝ3) of our Galois-Reflection groups extending Γ(2).

Remark 6.3. The above globe curve configuration is (along our coverings and mod-
ifications) a transformation of the Apollonius configuration (consisting of a quadric
and 3 tangent lines). By Corollary 3.3, the Apollonius curves are (all) norm-1

curves on ˆΓ(1− 𝑖)∖𝔹 = ℙ2, defined as quotients of norm-1 subdiscs of 𝔹. The lat-
ter property doesn’t change along correspondence transformations. Therefore the
two meridians and the equator on the above globe represent norm-1 curves on 𝐵̂.
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7. Appendix: Explicit unitary representations

For Γ = Γ(1) = 𝕊𝕌((2, 1),ℤ[𝑖]) we remember to the sequence of normal group
extensions by reflections well defined in Sections 3, 4.

Γ′ = Γ𝑈 = ⟨Γ(2), 𝜎0⟩, (recognized as Uludag’s);

Γ′′ = Γ𝑀 = ⟨Γ(2), 𝜎1, 𝜎2⟩, (rec. as Matsumoto’s, Hirzebruch’s);

Γ(1 − 𝑖) = ⟨Γ(2), 𝜎1, 𝜎2;𝜎0⟩;
Γ = ⟨Γ(2), 𝜎1, 𝜎2, 𝜎0;𝜎𝑎, 𝜎𝑏⟩;

(16)

with small abelian factor groups

Γ′/Γ(2) ∼= 𝑍2, Γ
′′/Γ(2) ∼= 𝑍2 × 𝑍2;

Γ(1− 𝑖)/Γ(2) ∼= 𝑍2 × 𝑍2 × 𝑍2, Γ/Γ(1− 𝑖) ∼= 𝑆3.
As promised we give the special unitary representations of the reflections. One has
only to apply their explicit definitions to the canonical basis of ℂ3:

𝜎0 = −𝑖 ⋅
(

𝑖 −1+𝑖 1−𝑖
−1+𝑖 𝑖 1−𝑖
−1+𝑖 −1+𝑖 2−𝑖

)
;

𝜎1 = 𝑖 ⋅
(

𝑖 0 0
0 1 0
0 0 1

)
, 𝜎2 = 𝑖 ⋅

(
1 0 0
0 𝑖 0
0 0 1

)
;

𝜎𝑎 =
( −1 −1−𝑖 1+𝑖

−1+𝑖 0 1
−1+𝑖 −1 2

)
, 𝜎𝑏 = −

(
0 𝑖 0
−𝑖 0 0
0 0 1

)
.

(17)

Proposition 7.1. The factor group Γ(1)/Γ′ is isomorphic to the motion group 𝕆 of
the octahedron. The factor group Γ(1)/Γ(2) is (isomorphic to) the double octahe-
dron group 𝑍2 ×𝕆 ∼= 𝑍2 × 𝑆4.

For the proof one uses a presentation of 𝑆4. The corresponding relations are
easily checked by the unitary representation of the generating elements (17). The
calculations mod ×Γ(2) are left to the reader.

Problem. Find explicitly 2-reflections generating Γ(2).

Hint. Matsumoto found in [Mat] explicit generators of Γ′′ = Γ𝑀 using the mon-
odromy of a curve family. Try to present them as products of reflections. This is
a finite problem. Then take squares of the order-4 reflection among the factors.

The solution of the problem is important for modular function tests for all
arithmetic lattices in (16). In [Mat], or better now in [KS], generating modular
forms for Γ𝑀 are explicitly known. The interaction with the octahedron group is
very interesting, especially for construction of class fields, see [Ri].
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