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Abstract. In [21] we have counted indefinite metrics (two-dimensional, integrally
defined, over Gauss numbers) with a fixed norm (discriminant). We would like to
call them also indefinite class numbers. In this article we change from Gauss to
Eisenstein numbers. We have to work on the complex two-dimensional unit ball,
an Eisenstein lattice on it and the quotient surface. It turns out that the compacti-
fied quotient is the complex plane P2. In the first part we present a new proof of
this fact. In the second part we construct explicitly a Heegner series with the help
of Legendre-symbol coefficients. They can be interpreted as “indefinite class num-
bers” we look for. Geometrically they appear also as number of plane curves with
(normed) Eisenstein disc uniformization.
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1. Preface

It is historically interesting that Poincaré [26] extended Gauss’ reduction theory
of real quadratic forms to complex ones using linear transformations with integral
Eisenstein or Gauss numbers as coefficients. In Bianchi’s article [2] one can find
a better understandable (German) version. It seems to be necessary (at least con-
venient) to work with Euclidean rings. For the same reason we are able to get our
results for Picard modular surfaces over Gauss [21] and, respectively, Eisenstein
numbers (this paper).

We consider two-dimensional submetrics of the three-dimensional hermitian in-
definite unimodular diagonal metric. The latter is defined by the sesquilinear form
〈 , 〉 with Gram matrix Dg =

(
1 0 0
0 1 0
0 0−1

)
. The complex hermitian space (C3, 〈 , 〉) is

denoted by C2,1. Let K be an imaginary quadratic number field and O = OK the
ring of integers in it. In C2,1 sits the indefinite hermitian lattice O2,1 = (O3, Dg).
Main objects of our study are indefinite two-dimensional hermitian sublattices E of
O2,1. We restrict ourselves through the paper to fields K with class number one,
mainly to the field Q(

√
−3) of Eisenstein numbers. Then E and its orthogonal
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O-line L ⊂ O2,1 have two respectively one O-generator(s). The latter is uniquely
determined up to anO-unit factor: L = Ol, where l is a primitiveO2,1-vector. The
norm n(E) is well-defined as norm n(l) = 〈l, l〉.
Let V− = {z ∈ C2,1; n(z) < 0} be the set of complex negative norm vectors. The
two-dimensional complex unit ball B consists of the negative lines in the projective
plane

B = PV− = V−/C∗ ⊂ PV = V/C∗ = P2.

We restrict the group action of U((2, 1),C) on B to the arithmetic subgroups Γ ⊆
U((2, 1),O) of finite index. The quotients Γ\B are normal complex algebraic
surfaces. The same is true also for their compactifications considered in this article.
They are called Picard modular surfaces. Refinements and extensions you find in
Subsection 2.1. For basic definitions and properties we refer to [18].

We continue with sublattices E ,L ⊂ O2,1 as above, but admit all submetrics of V .
Tensoring with R yield a hermitian plane E respectively a line L in V . Excluding
positive definiteness, we get non-zero intersections E− = E ∩ V−, L− = L ∩
V−. Their P-projection to B is a disc E = PE− ⊂ B respectively a point λ =
PL− = PL ∈ B. They come with discriminants and norms heritaged from E or L,
respectively.

In Section 2 (Subsections 2.1-2.7) we concentrate ourselves on the Eisenstein Con-
gruence Subgroup (ECS) Γ(

√
−3) ⊂ U((2, 1),OQ(

√
−3)) and its ball quotient

surface XΓ(
√
−3) := Γ(

√
−3)\B with (smallest) compactification X̂Γ(

√
−3). In-

vestigating a special system of partial differential equations Picard saw a close
connection between the ball, the ECM and the complex plane. But he could not
correctly prove it. It needed a long mathematical process for doing that. With
strong results of Deligne and Mostow around 1970 the present author was able to
prove that X̂Γ(

√
−3) = P2.1 Here we give a new (more direct) proof without use

of Deligne’s result. The whole Section 2 is dedicated to the surface classification
of X̂Γ(

√
−3). An essential role plays the ramification locus of the (locally finite)

covering B → XΓ(
√
−3). It consists of all discs of discriminant −1. The image of

them (branch locus) are six smooth curves. A preview with pictures (restricting to
real points, naturally) is presented in Subsubsection 2.1.1.. It gives a guideline of
vision for the later proof steps.

In the Subsections 2.2-2.5 we collect and prove all details we need for the classi-
fication attacks in the last two Subsections of the first Section. There we have to
verify the smoothness of the ECS X̂Γ(

√
−3). But also rationality and smoothness

of the irreducible branch curve components must be shown. Then the Chern in-
variants of surface and curves will be determined. Here we used L-series values

1First published together with historical background and motivations in [17].
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(proved by means of higher number theory) and Proportionality Theorems, both
in [18]. Last but not the least we need a celebrated Theorem of Miayaoka-Yau on
classification of surfaces with extreme Chern numbers. At the end we have P2 with
branch locus consisting of six embedded lines arranged as complete quadrilateral,
see Fig. 1 in Subsection 2.1.

The main result of Section 3 (Subsections 8 -13) is Theorem 64. It counts the
curves on P2 of Eisenstein norm N . If, for instance, N ∈ N+ is not divisible by 3
then this cardinality is equal to

hN =
∑

0<d|N

d2 ·
[(

d

3

)
+

(
N/d

3

)]
. (1)

Thereby
(
t
3

)
is the quadratic rest symbol. A simple modification is necessary, if

3|N , see Subsection 3.6 for details. The hN ’s appear as coefficients of an Heeg-
ner series. Its explicit construction for our Eisenstein curves is the main goal of
Section 3, one can say: of the whole article.

More precisely, we call the above plane curves also Picard-Eisenstein Curves
(PEC). These are the (irreducible) P2-curves Ĉ, which have along the ball quo-
tient morphism B � Γ(

√
−3)\B a disc D of norm N as uniformizing preimage

B // // Γ(
√
−3)\B �

� // P2

D // //?�

OO

Γ(
√
−3)\D
?�

OO

� � // Ĉ
?�

OO

Basic reference for Section 3 is [21], extended in [22]. In Subsections 3.1 and 3.2
we remind to the construction of “orbital invariants” on commensurability classes
of Picard modular surfaces and curves. In this framework we have explained
the notions of “orbital heights”, “orbital curves”,“orbital intersection products” of
them.2 The work in the just cited papers extended Cogdell’s result to all Picard
modular surfaces. The Heegner series of the Picard-Gauss plane P2 = X̂Γ(1+i) in
the article of 2002 explicitly found. Explicit knowledge of Koblitz’ work on mod-
ular forms, see [24]. In the mean time we discovered in the work of Erich Hecke
(1887 - 1947) explicit constructions of Eisenstein series ∈Mk(n, χ), see [12–14].
They were of type we look for: weight k, level n, discriminant-Nebentypus χ, see
Subsection 3.5.

2Historical starting point was Cogdell’s thesis publication [5], dedicated to neat Picard modular
congruence subgroups, where the connection with elliptic modular forms of Nebentypus was found.
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For the field K = Q(
√
−3), of Eisenstein numbers with Nebentypus-character

χK(n) =

(
−3

n

)
the relevant space M3(3, χK) is two-dimensional. For a proof

we have used a dimension-formula of Oesterlé-Cohen [6]. On the other hand
Hecke’s articles present two linearly independent series in M3(3, χK). So, the lat-
ter space of modular forms is generated by two explicitly known Hecke-Eisenstein
series E1, E2 (reproduced at the end of Subsection 3.5. With our combination of
arithmetic-geometric methods we calculated the first two coefficients h1 and h2 in
the general formula (1). Since the Heegner series belongs also to M3(3, χK) =
CE1 +CE2 we can determine precisely its E1, E2- linear combination (see Theo-
rem 64 again).

2. The Eisenstein Congruence Surface

2.1. Introduction

Let Pk = PkC denotes the k-dimensional complex projective space. K = Q(
√
−d)

is an imaginary quadratic number field, d ∈ N+, squarefree. OK denotes the ring
of integers in K, h(K) the class number of K. The modules/spaces On+1,Kn+1,
Cn+1, will be endowed with the unimodular indefinite hermitian metric 〈. , .〉 with
Gram diagonal matrix 

+1 0 . . . 0 0
0 +1 0 . . 0 0

...

...

...
0 . . . 0 +1 0
0 . . . . 0 −1


w.r.t. to the canonical basis. The corresponding hermitian O-modules/spaces are
denoted by On,1,Kn,1 or Cn,1, respectively.

Let generally V be an (n + 1)-dimensional hermitian C-vector space of signature
(n, 1). Looking at norms w.r.t. hermitian sesquilinear form h = 〈., .〉we will speak
about negative, positive or cusp vectors v, if the norm n(v) = 〈v, v〉 is negative,
positive, or zero, respectively. We introduce the notations

V− = {v ∈ V ; n(v) < 0}, V+ = {v ∈ V ; n(v) > 0}, V0 = {v ∈ V ; n(v) = 0}.

The complex lines in V through the 0-point will be identified with the points of
the n-dimensional projective space Pn. The negative vectors project along V →
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Pn = PV (keep in mind that you have to exclude the O-vector in V ) onto the n-
dimensional (complex unit) ball Bn. The projection maps V0 onto the boundary ∂B
of the ball. We will always assume, that V is generated by a hermitian K-space
VK with hermitian product hK , K as above. Notice that V = VC = VK ⊗ R,
hK : VK × VK → K.

From now on we concentrate ourselves to the second dimension. We call B := B2

the (complex two-dimensional) unit ball. With D we denote generally a complete
linear subdisc of B. It is defined as non-void intersection of complex projective
line L with our fixed ball B. Consider the projective projections

V−
� � //

����

V

����
B �
� // P2

(2)

again (where V is three-dimensional complex vector space. A (complete linear)
subdisc D of our fixed ball B is a non-void intersection of a projective line L with
B. Look at the lower rectangle of the following diagram

E �
� //

����

V

p
����

L �
� // P2

B ∩ L = D �
� //?�

OO

B
?�

OO (3)

In the upper part E denotes a subplane of V projecting projectively onto the line L
along p.

Definition 1. D is called a K-disc, iff the line embedding in the above diagram is
defined overK. It’s the same to say, that the L covering the planeE is aK-defined
subplane of V. Equivalently: one has two different K-points on L (or on D).

The action of unitary group U((2, 1),C) ⊂ GL3(C) on V ∼= C3 is compatible
with the hermitian structure. Therefore it induces an action on V−. Dividing out
the ineffectively acting central diagonal subgroup, the unitary action goes down
to that of PU(2, 1) on our ball. The corresponding actions are called fractional
transformations.

Now fix the imaginary quadratic number field K, also O = OK .
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Definition 2. The arithmetic group Γ2,1 = U((2, 1),O) is called the full Picard
modular group of the field K. Any subgroup Γ of U((2, 1),K), commensurable
with Γ2,1, will be called Picard modular group (or Picard modular lattice).

The well-known (e.g. from [18] and/or references there) are the following

Facts 3. The quotient surface Γ\B is an (open, t.m. non-compact) normal complex
algebraic surface. The same is true for its Baily-Borel compactification (BB) Γ̂\B.
Both types are called Picard modular surfaces. Adding finitely many (normal)
points one gets the BB compactification from the open model. These points are
called cusp points or cusp singularities.

With the notations

∂KB = ∂B ∩K2, B̂ = B ∪ ∂KB

we get the inclusion diagram with vertical surjections

B

����

� � // B̂

����

Γ\B �
� // Γ̂\B

Most important Picard modular subgroups of Γ (as above) are the congruence sub-
groups of O-ideals a. They are defined as

Γ(a) = {γ ∈ Γ; γ ≡ E mod a}

where E is the unit matrix of order three.

We would like to define arithmetic curves on Picard modular surfaces. For this
purpose consider a K-disc D in B (in the sense of Definition 1) together with a
Picard modular lattice Γ. The subgroup of all its elements γ acting on D itself is
denoted by NΓ(D). It is called the normalizer group of Γ and D. Dividing out the
ineffective (on D acting) kernel ZΓ(D) we get the effective on D acting Fuchsian
group ΓD := NΓ(D)/ZΓ(D). The quotient curve Γ\D is an (sometimes open,
sometimes compact) algebraic curve sitting on Γ\B. In general, there exist curve
singularities on it. Its closure on any compactification Γ\B of Γ\B is denoted
by Γ\D. The resolution of singularities of this curve is nothing else but the BB-
compactified quotient curve Γ̂D\D). Altogether we illustrate the situation in the
following commutative diagram of embeddings and surjections
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D̂

����

D? _oo

����

� � // B �
� //

����

B̂

����

ΓD\D̂

desing "" ""DDDDDDDD
Γ\D? _oo
� _

clo
��

� _

sure
��

� � //
� p

!!BBBBBBBB
Γ\B �

� //
� _

��

Γ̂\B

Γ\D // //
44Γ\B Γ̂D\D
?�

closure

OO
(4)

where D̂ := D∪∂KD with the set ∂KD = ∂D∩K B ofK-rational boundary points
of our disc.

By the way, the K-boundary points of D or B are called cusps of these objects.
Their image points along the left or right vertical arrows of the above diagram are
called cusp points of the curve or surface, respectively.

Definition 4. Let D be a K-disc, Γ a Picard modular group of K and Γ\B the
corresponding Picard modular surface. The image curve Γ\D on the surface will
be called a K-arithmetic curve or Picard modular curve (PM-curve). We use the
same notation for the compactifications of this curve on the surfaces appearing in
(4).

2.1.1. Preview: Picard Modular Surfaces of Eisenstein Numbers

We fix now K = Q(
√
−3), known as field of Eisenstein numbers. The ring of

(integral) Eisenstein numbers is the unique factorization domain O = OK = Z +

Zω, where ω = e
2πi
3 is one of the two primitive third unit roots. Main objects

of this paper will be the congruence subgroup Γ(
√
−3) := Γ2,1(1 − ω) of the

principal O-ideal (1− ω) generated by the O-prime element 1− ω of norm three.

Theorem 5 ([17]) . The BB compactification ̂Γ(
√
−3)\B is the projective com-

plex plane P2. There are precisely four cusp points on it. The six lines through
pairs of them is the (compactified) branch locus of the quotient morphism B →
Γ(
√
−3)\B.

We visualize the (compactified) branch curve in Fig. 1 below (real part). The con-
figuration is known as complete quadrilateral on the complex plane P2. The rami-
fication locus on B consists of infinitely many discs: the Γ(

√
−3) - orbit of the six

ramification discs drawn in Fig. 2 below (real cut). Representative Γ(
√
−3)-cusps,
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covering (all four) plane cusp points along the cusp-extended quotient morphism
(see Diagram 4 ), are marked by little red diamonds in the pictures.

Figure 1. Branch locus Quadrilateral. Figure 2. Covering ramification discs.

We fix a numeration (1,2,3,4) of the cusp points. It allows us to denote each branch
line by the two cusp points lying on it. For instance L1,2 = L2,1 is the line through
the points “1” and “2”.

Corollary 6. The branch/ramfication index at each of the six lines/discs is equal
to three.

Here the numbers ±1 are nothing else but the x-coordinates on the horizontal disc
or the y-coordinates on the vertical one, respectively. More precisely, we marked
the cusps by (affine) coordinates

κ1 = (1, 0), κ2 = (0, 1), κ3 = (−1, 0), κ4 = (0,−1). (5)

The disc joining the two cusps κi and κj , 1 ≤ i < j ≤ 4, will be denoted by Di,j .
Blue points represent (R-visible) intersection points of two ramification discs. Also
their projections along the quotient morphism B → Γ(

√
−3)\B = P2 are marked

by the same color. On P2 (all) three of them are R-visible, drawn in Fig. 1.

Remark 7. In this paper we will give a new proof of the statements of this Subsec-
tion. It is - other than in [17] - essentially supported by the branch locus. Emmy
Noether emphasized a century before today the important role of ramifications.
Our aim is to improve it geometrically in dimension two.

The proof will be finished at the end of Section 2.7.
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Remark 8. With

G =


√
−3
2 0 −

√
−3
2

0 1 0
1 0 1

 , N =

 0 0 − 1√
−3

0 1 0
1√
−3

0 0


the hermitian spaces C2,1 = (C3, Dg) and (C3, N) are isometric. Namely the
Gram matrices Dg and N are conjugated to each other: tG · N · G = Dg. It
defines the isometry

Θ : V = C2,1 ∼−→ (C3, N) = V ′, c 7→ Gc.

It induces an isomorphism of unitary groups

U((2, 1),C) = U(Dg,C)
∼−→ U(N,C), A 7→ G−1AG.

It restricts to the unitary subgroups with coefficients in K = Q(
√
−3). The image

of the Picard modular Eisenstein lattice Γ(
√
−3) lands in the commensurability

class of ∆ = U(N,O), say Γ′ = G−1Γ(
√
−3)G.

Cogdell established the Heegner series for neat principal congruence subgroups
∆(α), α ∈ OK . How Heegner’s construction extends to all members of the com-
mensurability class of ∆ is explained in [21, 22]. We pull the pair (V ′,Γ′) back
along the isometry Θ to (V,Γ(

√
−3)). Along this way we get the same Heegner

series for Γ(
√
−3) and G′. We get also the same quotient surface P2 for both

arithmetic groups. Also the plane curve interpretations are the same.

2.2. Unimodular Sublattices

We fix an imaginary quadratic number field K, for simplicity of class number one.
Moreover, the ring O = OK of K-integers is assumed to be a unique factorization
domain (Gauss and Eisenstein numbers belong to this class). For any hermitian
O-sublattice Λ of O2,1 of O-rank 1, 2 or 3 we define the dual lattice as O-module

Λ# = {x ∈ Λ⊗K ; 〈x, l〉 ∈ O, for all l ∈ Λ}.

Notice that Λ ⊆ Λ# with equality if and only if Λ is unimodular. Equivalently:
the discriminant dcr(Λ) is equal to ±1. Thereby the discriminant of Λ is defined
to be the determinant of the Gram-Matrix of an O-basis of Λ with respect to the
hermitian form. It is defined up to multiplication with a norm unit of O.

Two subsets M,N of K2,1 are said to be orthogonal, iff 〈m,n〉 = 0 for all m ∈
M,n ∈ N . We write M⊥N in this case. Orthogonal direct sums of lattices are
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written as M � N . The orthogonal complement of M ⊆ O2,1 in O2,1 is the
sublattice

M⊥ = {n ∈ O2,1 ; n⊥M}.

Obviously, the discriminants of orthogonal lattices M,N ⊆ O2,1 behave multi-
plicatively

dcr(M �N) = dcr(M) · dcr(N). (6)

Two sublattices M,N of Λ are called orthogonal complementary (in O2,1), iff
M ∩N = {o}, M⊥ = N and N⊥ = M .

Fact 9. ([20, Proposition 6.1]). If M and N are orthogonal complementary sub-
lattices of O2,1, then M#/M ∼= N#/N as O-modules.

Corollary 10. Under the above conditions it holds that: M is unimodular if and
only if N is unimodular.

Corollary 11. Let M be an indefinite rank-2 sublattice ofO2,1 and G its orthogo-
nal complement in O2,1, say G = Oc. Then −dcr(M) = n(c) > 0.

Hint. ExpressM#:M in terms of the discriminant ofM , do the same withG# : G
and compare.

�

Examples 12. A central role will play the following six norm one vectors di,j to-
gether with their orthogonal planes Ei,j , 1 ≤ i < j ≤ 4, (of discriminant −1)

E1,2⊥d1,2 =

1
1
1

, E1,3⊥d1,3 = t

0
1
0

, E1,4⊥d1,4 =

 1
−1

1


E2,3⊥d2,3 =

−1
1
1

, E2,4⊥d2,4 =

1
0
0

, E3,4⊥d3,4 =

 1
1
−1

 .

(7)

The unimodular plane Ei,j is generated by the i-th and j-th column Ci, Cj , respec-
tively, of the following “cusp matrix” (all 4 columns are cusp vectors)

C =

 1 0 −1 0
0 1 0 −1
1 1 1 1

 . (8)
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The projective projections of the Ci (see Diagram 3, Section 2.1 are the four cusps
κi = PCi, i = 1 . . . 4. We visualized them in Fig. 2 at the end of Section 2.1. Con-
sequently, the P-projections of the planes Ei,j are six projective lines Li,j whose
intersections with the ball B are the discs Di,j drawn in Fig. 2.

2.3. Counting Special Points

2.3.1. Cusp Points on Γ̂\B

We remind the following

Theorem 13 (Feustel [9], elegant proof in [29]) . Let Γ2,1
K be the full Picard mod-

ular group of an arbitrary imaginary quadratic number field K. Then the quotient

surface Γ̂2,1
K \B has precisely h(K) cusp points.

We concentrate us to the field of Eisenstein numbers again, omitting some in-
dices. E.g. write simply Γ for the full Picard modular group U((2, 1),O), where
O = Z[ω] is the ring of integral Eisenstein numbers.

Lemma 14. The factor group Γ/Γ(
√
−3) is isomorphic to the (doubled) symmet-

ric group ±S4. It is geometrically represented as orthogonal group O((2, 1),F3),
where F = F3 denotes the finite field O/(1 − ω) consisting of three elements
0,+1,−1, say.

Proof: The action of Γ onO2,1 goes modulo (1−ω) down to an orthogonal action
on F2,1 with ineffective kernel Γ(

√
−3). So we have an embedding

Γ/Γ(
√
−3) �

� // U((2, 1),F) = O((2, 1),F) ∼= ±S4. (9)

It is well-known that the projective group PO((2, 1),F) is isomorphic to the sym-
metric group S4, see e.g. [7]. It appears as permutation group of the F-points

(1 : 0 : 1), (0 : 1 : 1), (−1 : 0 : 1), (0 : −1 : 1) (10)

which are images along the (projectivized) residue map O3 → F3 of the cusp
vectors sitting in the cusp matrix C in (8). In affine coordinates the corresponding
Γ(
√
−3)-cusp points are listed in (5) and drawn in Fig. 2. The Γ-elements

Σ12 =

 1 2 2
2 1 2
−2 −2 −3

 , Σ13 =

−1 0 0
0 1 0
0 0 1

 , Σ14 =

−1 2 −2
2 −1 2
2 −2 3


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act via residue map on the F-cusp vectors Ci mod 3 as S4-transpositions (12),
(1, 3), (1, 4) (up to sign). These three elements generate S4. Therefore Γ/Γ(

√
−3))

∼= ±S4, hence, the inclusion (9) is the identical map. The Lemma is proved. �

Corollary 15. The Eisenstein congruence surface ̂Γ(
√
−3)\B has precisely four

cusp points. Lifted representants on ∂B are the (red) B- boundary points drawn in
Fig. 1.

Proof: From Feustel’s Theorem 13 we know that the cusp orbit of the full Picard
modular group Γ consists of only one element, take Γκ1. The preimage of this
cusp point on the congruence surface are the (projectivized) orbits

Γ(
√
−3)

1
0
1

 , Γ(
√
−3)

0
1
1

 , Γ(
√
−3)

−1
0
1

 , Γ(
√
−3)

 0
−1

1


see (10) as well as Figs. 1 and 2. �

2.3.2. B-points of Maximal Negative Norm −1

Each K-line L = Ka ∈ K3 can be generated by a primitive vector p ∈ O3, which
is unique up to multiplication with a 6-th unit root.

Definition 16. With these notations, the norm N = n(L) is uniquely defined as
n(p) ∈ Z. p is called a normN vector. If the norm is negative, then p = Pp = L is
a ball point. We endow p and also its image point P on the Eisenstein congruence
surface with the same norm n(P ) = n(p) = n(p) = N . We speak then also about
norm N points p or P .

It is clear that only K-points with integral negative norms exist on the ball B and
on the Picard modular quotient surfaces.

Proposition 17. The −1 vectors in O2,1 fill precisely one Γ-orbit, namely Γ
(

0
0
1

)
.

This orbit splits into three Γ(
√
−3)-orbits.

Proof: Otremba proved in [25] that, especially for Eisenstein numbers, there is
only one isometry class of positive definite unimodular hermitian O-lattices of
rank two, see also Hashimoto [11]. Take the simplest one E generated by the first
two of the canonical O3-basis vectors

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .
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If c denotes an arbitrary norm −1 vector in O2,1, then its orthogonal complement
there, denoted by F , is a rank 2 sublattice of O2,1 with discriminant +1 by Corol-
lary 11. According to Otremba/Hashimoto there are lattice isomorphisms

E ∼= F, Oe3
∼= Oc, O2,1 = E �Oe3

∼= F �Oc.

So we extended the second isometry to a rank three one γ ∈ Γ, hence c ∈ Γe3.

For the second statement we must check the orbit Γe3 modulo Γ(
√
−3). We deal

with the action of the factor group S4 on the residue space F2,1. The Klein’s four
group K4 ⊂ S4 fixes e3. The factor group S3

∼= S4/K4 moves effectively this
vector. Geometrically, on the Eisenstien congruence surface, there are three moved
points, visualized in Fig. 1 by blue bullets. Pulling them back to the ball we get
the explicit splitting

Γe3 = ±Γ(
√
−3)

0
0
1

 t ±Γ(
√
−3)

 1
1

1− ω

 t ±Γ(
√
−3)

 1
−1

1− ω

 .

Namely, the three −1 vectors inside are not pairwise Γ(
√
−3)-equivalent. �

2.3.3. Norms of K-Discs and Their Quotient Curves

We denote by E now an indefinite rank-two sublattice of O2,1. Its orthogonal
complement in O2,1 is an O-line L. We know that n(L) = −dcr(E) > 0 by
Corollary 11. The complex plane E = R ⊗ E defines the K-disc D = PE ∩ B in
the ball. Similarly, we set L = R⊗ L.

Definition 18. With the above notations we call n(E) := n(E) =: n(D) the norm
of the K-disc D. Also the image curve Γ(

√
−3)\D (as well any closure/compacti-

fication) on the Eisenstein Congruence Surface will be endowed with the same
norm.

Observe, that conversely a given K-disc D determines uniquely the line L as pro-
jective (algebraic) closure of the disc in the projective plane P2 ⊃ B. Furthermore
this line is uniquely lifted to the plane E ⊂ V , see Diagram 3 in Section 2.1.
Moreover, we get with E = E ∩ O2,1 the corresponding indefinite rank 2 sub-
lattice of O2,1. Its absolute discriminant is the norm of D (see Corollary 11).
Moreover, given an arithmetic curve C on the Eisenstein Congruence Surface,
say C = Γ(

√
−3)\D, then the covering K-disc D is determined up to Γ(

√
−3)-

equivalence. But the disc-norm is stable under Γ(
√
−3)-transformations. So also

the curve norm n(C) is well-defined.
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Of special interest are the discs and their quotient curves of norm +1. Parallel to
Proposition 17 we have

Proposition 19. The +1 vectors in O2,1 fill precisely one Γ-orbit. (For simplicity
you can take Γe1). This orbit splits into six Γ(

√
−3)-orbits, generated e.g. by the

following six norm 1 vectors (arranged in three orthogonally intersecting pairs)1
1
1

⊥
 ω

ω2

−1

 ,

0
1
0

⊥
1

0
0

 ,

 1
−1

1

⊥
−1

ω
ω2

 . (11)

Proof: Obviously, they are not pairwise (1−ω)-congruent to each other. Therefore
they generate different Γ(

√
−3)-orbits of norm one vectors. The symmetric group

S4 acts on their residue classes modulo (1 − ω) with ineffective kernel K4. The
residue vectors coincide with the six F-vectors di,j ∈ F2,1, 1 ≤ i < j ≤ 4 listed
in (7). There are no more one-vectors in F2,1. Therefore the six ones in (11) form
a complete set of representatives of norm one vectors modulo Γ(

√
−3). �

Remark 20. Each of the three ortho-pairs indicated in (11) generate a positive
definite subplane in O2,1 of minimal discriminant +1. They have orthovectors of
norm −1, namely  ω

−ω2

ω − ω2

 ,

0
0
1

 ,

 1
ω

1− ω

 . (12)

Visualisation. The six discs Di,j have been defined at the end of Section 2.2 by
their norm one vectors in (11). They are drawn in Fig. 2. Their quotient curves on
the congruence surface appear in Fig. 1. The three −1 points on B, projected from
the vectors in (11, are intersections of the disc pairs with orthogonal vectors listed
in (11). Only one of them is visible (real coordinates). But along the quotient map
B → Γ(

√
−3)\B all three points will be visible (as blue bullets) on the quotient

surface. By Proposition 17 these are all−1 points on the congruence surface. Each
of them is an intersection point of two norm 1 curves.

2.3.4. Stabilizing Subgroups

Lemma 21. The stabilizer group of e3 in Γ(
√
−3) is the diagonal group

ωi 0 0
0 ωj 0
0 0 ωk

 ; 1 ≤ i, j, k ≤ 3

 .
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The projective stabilizer of the (blue) −1 point O ∈ B, is represented by〈ω 0 0
0 1 0
0 0 1

〉×〈
1 0 0

0 ω 0
0 0 1

〉 =


ωi 0 0

0 ωj 0
0 0 1

 ; 1 ≤ i, j ≤ 3

 . (13)

The projective stabilizer of any −1 point on B is isomorphic to the bicyclic group
K9 := Z3 × Z3 of order nine.

Proof: Obviously, the Γ-stabilizer of e3 is
(
U o
to 〈−ω〉

)
with U = U(2,O) and o

the two-dimensional zero vector. Intersection with the congruence subgroup yield
the diagonal group in Lemma 21 and finally the projective K9-representants in
(12). �

Definition 22. For any Picard modular group ∆ we call δ ∈ ∆ a ∆-elliptic ele-
ment iff it has finite order and three different eigenvalues. The notation will also
used for the projectivized elements. The point Q ∈ B is called a ∆-elliptic point
iff the stabilizing (isotropy, stationary) group Stab∆(Q) contains a ∆-elliptic ele-
ment.

Examples 23. The central pointO ∈ B is a Γ(
√
−3)-elliptic point because its sta-

tionary group contains the Gw-elliptic element diag(ω, ω2, 1). The elliptic prop-
erty can be easily transported via Proposition 17 to all (blue) −1 points of B.

Remark 24. Any elliptic δ ∈ ∆ has precisely one fixed point Q ∈ B.

Proof: It is easy to see that the eigenbasis of δ consists of an orthogonal basis of
V . This is only possible with two positively normed vectors and a negative one,
say q ∈ V−. Then Q = Pq is the point we looked for. �

Definition 25. With the notations of Definition 22 we call δ a ∆-reflection, iff it
has finite order and precisely two different eigenvalues, where the eigenline of the
simple one belongs to V+.

Remark 26. Eigenvectors of different eigenvalues are orthogonal to each other.
Therefore the eigenplane E ⊂ C2,1 of the double eigenvalue is indefinite being
orthogonal to a positively normed vector. It follows that E projects and restricts to
a disc D = B ∩ PE on our ball.

Definition 27. Such D as above is called a ∆-reflection disc (precisely: of the
reflection δ). The centralizer (group) of D is the ineffectively on D acting subgroup

Z∆(D) = {γ ∈ ∆; γ|D = id |D}. (14)
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Example 28. The element diag(ω, 1, 1) acts identical on the horizontal disc D2,4,
and diag(1, ω, 1) acts inefficiently on the vertical coordinate disc D1,3.

Compare the notations at the end of Section 2.2 and the Visualisation 2.

Lemma 29. All−1 pointsQ on B are intersection points of two Γ(
√
−3)-reflection

discs D,D′. The stationary groups are isomorphic to K9 = Z3×Z3, with central-
izer groups ZΓ(

√
−3)(Di) ∼= Z3 of the D and D′ as generators.

Proof: The situation around O described in Lemma 21 is transported with the help
of Γ to each −1 point Q (see Proposition 17). �

2.4. All Elements of Finite Order

Let K be an imaginary quadratic number field and γ ∈ GL3(K) an element of
finite order n. The characteristic polynomial of γ over K has degree three. All
zeros of it are n-th unit roots ζn ∈ C. Over Q the roots have degree not greater than
six. Denote by χ(x) ∈ Q[x] a polynomial with zero ζn of degree ≤ 6. We want to
know, which unit roots can occur for γ ∈ Γ(

√
−3). We concentrate us first to prime

numbers n = p and to the fieldK of Eisenstein numbers. The minimal polynomial
over Q with zero ζp has degree p − 1. It divides χ(x), therefore p − 1 ≤ 6. The
only possibilities are p = 2, 3, 5, 7. The latter two primes can be excluded, because
ζ5, ζ7 are not zeros of a polynomial of degree ≤ 3 over K.

If n = pk is a prime power, then the degree of the prime polynomial of ζpk over Q
is equal to (p − 1)pk−1. Over Q(

√
−3) survive only the honest powers 22, 32. In

congruence subgroups we can further restrict the possible orders of finite elements.
In [20, Lemma 7.1], we proved the elementary

Lemma 30. Let a be an ideal inO, γ ∈ Γ(a) of finite order n with n-th unit root ζ
as eigenvalue. Then a divides the principal ideal (1− ζ) in OL, where L = K(ζ).

For the Eisentein congruence subgroup Γ(
√
−3) we get for a = (1−ω) the relation

(1−ω) | (1−ζ) ∈ OK(ζ). The only possible prime order for ζ is p = 3. The prime
powers 22, 32 are excluded, but also p = 2. We notice the following

Corollary 31. The only elements of finite order in Γ(
√
−3) have order three. Each

of them is conjugated to one of the diagonal elements diag(ωi, ωj , ωk).

We want to determine all reflections in Γ(
√
−3). Such a reflection σ must be of

order 3 by Corollary 31 with a double and a single eigenvalue. Without loss of
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generality, we assume that 1 is the double eigenvalue and ω the other one (if not,
take the inverse or/and multiply σ with ω or ω2). The eigenplane is denoted by
E. Its orthogonal complementary line in V is denoted by G. The integral part
G = O3 ∩G is spanned by a primitive (eigen) vector g with positive norm and sits
on the line G orthogonal to E. We assert that its norm n(g) = n(G) is equal to
three.

2.5. Elliptic Elements

We want to prove that the Eisenstein quotient surface Γ(
√
−3)\B is smooth and

that the Γ(
√
−3)-reflection discs fill completely the ramification locus of the (lo-

cally finite) quotient morphism B → Γ(
√
−3)\B. For this purpose we must find

all elliptic elements, points, of our Picard Eisenstein congruence lattice Γ(
√
−3)

or on the surface Γ(
√
−3)\B, respectively.

Characterisation 32 (of elliptic elements) . Let ∆ be a Picard modular group of
the two-ball. An element δ ∈ ∆ is elliptic iff it has an isolated fixed point P on B.
This means that in a small open neighbourhood of P there is no other fixed point of
δ. A point P ∈ B is a ∆-elliptic point iff the stationary group Stab∆(P ) = {γ ∈
∆; γ(P ) = P} contains an elliptic group element (cf. Shimura [28, Chapter I]).

Remarks 33. For each ball point P the stationary group Stab∆(P ) is finite be-
cause ∆ acts proper discontinuously on B. An elliptic element δ ∈ ∆ has finite
order, say n. Being not a reflection it has three different eigenvalues. Each of them
is an n-th unit root. Any triple of eigenvectors of the different eigenvalues is an
orthobasis of C2,1. Precisely one of these basis vectors, let us denote it by c, has
negative norm. Its projection P on B is the only ball fixed point of δ.

Proposition 34. The set of Γ(
√
−3)-elliptic ball points coincides with the set of

−1 points on the Eisenstein Congruence surface. It is the same to say: with the set
of intersection points of two Γ(

√
−3)-reflection discs on B.

Proof: The inclusion ⊆ has already been proved with Lemma 29, namely the −1
point O contains the elliptic element δ = diag(ω, ω2, 1). For any −1 point P
one finds a γ ∈ Γ(

√
−3) transporting O to P . Then γδγ−1 stabilizes P , has the

same eigenvalues as δ, is therefore elliptic. The inverse inclusion has been proved
in [17, Ch.I, 1.4.5], over two pages, elementary but a little bit tricky. �
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2.6. Smoothness of the Eisenstein Congruence Surface (ECS)

2.6.1. Smoothness of the Open Surface Γ(
√
−3)\B

Corollary 35. The projective stabiliser group StabΓ(
√
−3)(p) of each Γ(

√
−3)-

elliptic point p ∈ B is isomorphic to Z3 × Z3. It is generated by two Γ(
√
−3)-

reflections. Therefore the image point P on Γ(
√
−3)\B is smooth. Hence the

whole (open) quotient surface is smooth.

Proof: We saw, that p must be a ballpoint of norm−1 and that it is the intersection
of precisely two reflection disc (Proposition 34). Because of the Γ-equivalence of
all −1-points we can assume that p = O. We visualized the local situation around
O in Fig. 2. The reflections

(
ω 0 0
0 1 0
0 0 1

)
,
(

1 0 0
0 ω 0
0 0 1

)
generate obviously K9 = Z2

3
∼=

StabΓ(
√
−3)(O). The image point of O, and also of p on the Congruence Surface

is locally isomorphic to its image of O on C2/StabΓ(
√
−3)(O). The latter image

point is a smooth one by the following old result

Proposition 36 (Chevalley [4]) . Let G be a finite subgroup of GLn(C), p : Cn →
Cn/G the quotient map. Then p(O) is a regular point if and only if G is generated
by reflections.

�

We remember the definitions for arbitrary B-lattices ∆ and ∆-discs D to its nor-
malizer and centralizer group (see the text before Diagram (4) in Section 2.1)

N∆(D) = {α ∈ ∆; α(D) = D}, Z∆(D) = {α ∈ ∆; α|D = id |D}. (15)

The effectively on D acting group is: ∆D = N∆(D)/Z∆(D).

Proposition 37. The image curve of any Γ(
√
−3)-reflection disc D on the (open)

Congruence Surface Γ(
√
−3)\B is smooth.

Proof: Let σ ∈ Γ′ := Γ(
√
−3) be a reflection and denote the corresponding

reflection disc by D = Dσ. Knowing that the quotient curve Γ′D\D is smooth we
see that also Γ′\D ⊂ Γ′\B has no singularities iff the Γ′-equivalence for points
on D is not stronger than the NΓ′(D)-equivalence. But this generally known for
reflection discs (see [18, Lemma 4.5.2]). �
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2.6.2. Smoothness at the Cusps

We want not explain here the necessary notions and calculations for understanding
things around cusps. We will shortly mention the things we used. The interested
reader should consult [17] (for the ECS).

• Neat subgroup, toroidal compactifications, cusp bundle over elliptic curves,
disc bundles over elliptic curves, their plugging in, smooth crossing fibres,
cyclic quotients of elliptic cusp bundles, curve compactifications ∆\B around
cusps.

• explicit calculations [EPD], yield the second graph type in [16, Proposition
4.2])

◦3

♦−1

CCCCCCCC

{{{{{{{{
◦3

◦3

(16)

This is a “dual graph” of four (irreducible) curves. The circles stand for re-
flection curves with (positive) indices announcing the branch order. The cen-
tral diamond represents a compactifying curve with (negative) index, which
means the selfintersection. The lines are interpreted as intersection points of
the curves joint by them. So the cusp curve has three intersecting reflection
curves. We know moreover that our ECS-cusp curves are rational.

Proposition 38. All (four) cusp points of the ECS are non-singular. They are also
regular points of each of (the six) reflection curves.

Altogether with Propositions 35 and 37 we get

Theorem 39. The BB-compactified Eisenstein Congruence Surface ̂Γ(
√
−3)\B is

smooth. All (six) (compact) reflection curves ̂Γ(
√
−3)\D on it are smooth.

2.6.3. Curve Classification

Let D be a Γ(
√
−3)-reflection disc on B andC its (open) quotient curve Γ(

√
−3)\D

⊂ Γ(
√
−3)\B. The closure of the BB- compactified or curve compactified surface

is denoted by Ĉ or C, respectively.
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Exercise. Determine the Euler-Poincaré volume of a fundamental domain F of
the one-dimensional Eisenstein D-lattice PU((1, 1),O) = ΓD and F ′ of Γ′D =

Γ(
√
−3)D.

Answer (Feustel [8])∫
F ′
γ1 = −2/3 with Euler form γ1 on D. (17)

Hint. Use a transfer of U((1, 1),O to a SL2(Z)-commensurable group acting on
the upper half plane H along a suitable biholomorphic fractional map D ∼ // H .
Relate it with the volume of a SL2-fundamental domain on H, which is equal to
−1

6 . For more details see [17, I.1.5.]

Next we want to calculate Euler number e(C) and signature σ(C) of the Γ(
√
−3)\B

- embedded compact reflection curve C. A good geometric orientation is concen-
trated in the following

C-Graph ([18, Figure in Example 4.7.6])

�

•3

AAAAAAAA

}}}}}}}
◦3

�

(18)

It is a “dual graph” again. The small circle and the diamonds stand for curves
crossing C represented by the central bullet. More precisely, the diamonds stand
for cusp curves, the circle: for the reflection curve crossing the given one. The
attached numbers 3 indicate the branch order (ramification index).

We encaged Euler number and selfintersection defining (one-dimensional) orbital
heights: he the Euler-height and hτ the signature-height. We only reduce the
definition here to the cases, when at most two components of the irreducible branch
curves are intersecting in any point of the curve compactified model of a Picard
modular surface. I refer to the more general Definition 4.7.3 in my book [18].
Surface singularity data ei, dj can be simplified (see below) because our surface

(ECS) is smooth. In [18] we wrote “ef”,“τf” instead of he,
hτ
3
·
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Definition 40. The one-dimensional orbital Euler hight and orbital signatur hight
are defined as

he(C) = e(C)−
∑
i

(1− 1

vidi
)−#C∞

hτ (C) =
1

v

(C
2
) +

∑
i

ei
di

+
∑
j

ej
dj

 (19)

where e(C), (C
2
) are respectively the Euler number and the selfintersection index

of the reflection curve C. Singularity data are trivial: ei = 0, dj = 1. The branch
order of C is denoted by v, while vi is the branch order of the i-th curve crossing
C.

The number of rational compactification curves crossing C is denoted by #C∞.
Here he is the algebraic expression for the Euler volume

∫
F ′ γ1, and hτ = 1

2 · he.
The relations can be found in [18, 4.7.7]. The latter one is known as proportional-
ity.

Now we can calculate with the help of (17), (18) and (19)

−2

3
= he(C) = e(C)− (1− 1

3 · 1
)− 2

−1

3
= hτ (C) =

1

3
·
[
(C

2
) + 0 + 0

]
.

It follows that

Lemma 41. Any of the six reflection curves C on the ECS have Euler number 2.
So these are smooth rational curves. Moreover their selfintersection is equal to
−1.

2.7. Surface Classification

For brevity, e.g. at indices, we use following notations

Γ = U((2, 1),O), Γ′ = Γ(
√
−3), X = Γ\B, X ′ = Γ′\B.

We defined in [18] two-dimensional orbital heightsHe, Hτ for any Picard modular
surface. Let us pick out the easy variant of smooth curve compactified Picard mod-
ular surfaces and (smooth) branch curve on it without triple points. The irreducible
compactification curves are assumed to be rational.
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Definition 42. The orbital Euler hight respectively signature hight look like this

He(X
′) = E(X ′)− 2(1− v−1) ·D · tv−1 − 1

2
(1− v−1) · S · t(1− v−1)− t

(20)
Hτ (X ′) = Σ(X ′)− 1

3
(v − v−1) ·D · tv−1 − 1

3
(T 2).

Thereby T denotes the compactification divisor. Its number of components is de-
noted by t. D is the (diagonal) selfintersection matrix of branch curve components.
S denotes the proper intersection matrix of the same curves, that means with self
intersections substituted by 0.

In the case of the Eisenstein Congruence Surface we have t = 4 by Corollary 15,
and

D = diag(−1,−1,−1,−1,−1,−1)

by Lemma 41. With suitable numeration one gets for the six reflection curves on
X ′

S =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


because each component has only one intersecting partner, see Diagram 18 with
Proposition 19 in the background.

The right hand sides in (20) can now be calculated

E(X ′) −
6∑
i=1

(
(1− 1

3
) · (−1) · 1/3

)
− 2 · 4, −1

2

6∑
i=1

(
(1− 1

3
) · 1 · (1− 1

3
)

)
(21)

Σ(X ′) − 1

3

6∑
i=1

(
8

3
· (−1) · 1

3

)
− 1

3
· 4 · (−1).

The left hand sides of (20) are volumes of fundamental domains again∫
F(Γ′)

γ2 with Euler form γ2 on B,
∫
F(Γ′)

τ2 with signature form τ2 on B.

For details we refer to [18] or [1]. There one can also the important Proportion-
ality Theorem (Proposition 2) in [18, 4.9.1]. Originally it comes from Hirze-
bruch’s comparison of Chern forms of invariant metrics on symmetric domains,
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well-understandable summarized in [1]. Here we need the Proportionality Rela-
tion

γ2 = 3τ2 consequently He(X
′) = 3Hτ (X ′).

Remarks 43. The conclusion needs higher dimensional modern Riemann-Roch
Theory in the sense of Grothendieck-Hirzebruch, see [18] with background in
Hirzebruch’s book [15].

The Euler volumes of full Picard modular groups have been determined in the
second half of the 1970’s. They appear as L-series values, multiplied with an
elementary number. A proof has been reproduced in [18, Ch.V, 5A]. Later, by
means of functional equation they could be expressed in terms of (higher) Bernoulli
numbers, see last formula in [19]. Especially, it was found

He(X
′) =

∫
F(Γ′)

γ2 = 1/3, Hτ (X ′) =

∫
F(Γ′)

τ2 = 1/9

see e.g. [18, Proof of Lemma 5.2.2]. We plug it into the left hand side of (20),
calculate (21) to get

1

3
= E(X ′)− 20

3
,

1

9
= Σ(X ′) +

28

9
·

It follows that E(X ′) = 7 and Σ(X ′) = −3. Each of the four cusp lines on X ′

have selfintersection −1. So, the birational morphism X ′ → X̂ ′ is the simulta-
neous blowing down of four exceptional curves to four (regular) cusp points. It
induces classically the following change of Chern numbers

E(X̂ ′) = E(X ′)− 4 = 3, Σ(X̂ ′) = Σ(X ′) + 4 = 1.

Proposition 44. The BB-compactification X̂ ′ = ̂Γ(
√
−3)\B has the following

Chern invariants

Euler number E(X̂ ′) = 3, Signature Σ(X̂ ′) = 1.

One derives from them two other Chern invariants, arithmetic genus and Selfinter-
section of the canonical class

χ =
1

4
(E + Σ) = 1, (K2) = 12χ− E = 9.

Now we must remember to the following highlight theorem of the 1980’s
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Theorem 45 (Miyaoka -Yau) . A smooth compact complex surface of general type
is a ball quotient ∆\B (for a suitable cocompact ball lattice ∆) if and only if their
Chern numbers (K2) and E (Euler number) satisfy the relation

(K2) = 3E. (22)

In this case there is no rational curve on the surface.

A simple resumée of Miyaoka’s and Yau’s approach to the above theorem can be
found in [1, Anhang B.2, F]).

From classification theory of complex surfaces of Kodaira dimension < 2 one
deduces (after careful check of the texts in [3] or [27] around Chern invariants)

Proposition 46. The only smooth compact complex algebraic surface, not of gen-
eral type, satisfying condition (22) is the projective plane P2.

Corollary 47. If there is a rational curve on the smooth compact complex surface
satisfying Chern number relation (22), then it cannot be of general Type. It has to
be isomorphic to the projective plane P2.

Main Theorem 48. The Eisenstein Congruence Surface ̂Γ(
√
−3)\B is the projec-

tive plane P2. The four cusp points Ki, i = 1..4, are not collinear. The compact-
ified branch locus of the quotient morphism Γ(

√
−3)\B → Γ\B is the complete

quadrilateral on P2, visualized in Fig. 2. Each component is a line through two of
the cusp points.

Proof: We know by Proposition 44, that for our ECS the Chern relation (22) is
satisfied. By Corollary 47 and Theorem 45 it cannot be a surface of general type.
But then it follows from Proposition 46 that the BB-compactified Eisenstein Con-
gruence Surface is the projective plane P2.

The six reflection discs visualized in Fig. 1 cover our the branch curves along the
ball quotient morphism. On any of the above discs D ly, up Γ(

√
−3)-equivalence,

precisely two cusps. Hence the compactified image curveC goes through precisely
two cusp curves of X ′. We see in Lemma 41 that the selfintersection index (C

2
)

is equal to −1. Each blowing down curve crossing C increases the selfintersection
by 1, therefore (Ĉ2) = (C

2
) + 2 = 1. But Ĉ is a smooth rational curve on P2.

There are only two possibilities: It is a quadric or an embedded line on the plane.
The first case can be excluded because selfintersection of a quadric is equal to 4.
The Main Theorem is proved. �



26 Rolf-Peter Holzapfel

3. Heegner Series of Picard Modular Surfaces

3.1. Orbital Invariants

3.1.1. Orbital Surface Heights

Let F denotes the category of open Picard modular surfaces, but with only finite
morphisms. More precisely, we pick out only the finite morphisms of F supported
by inclusions Γ′ ⊆ Γ, that means the quotient morphisms Γ′\B � Γ\B. For any
imaginary quadratic number field K we let FK be the complete subcategory of all
Picard modular surfaces over fixed K. Conversely, we can consider F as disjoint
union of all FK .

We can also built the categories F̂ ,F of BB-compactified or curve-compactified
objects and morphisms from F . If we correspond to each object/morphism its
compactification we get natural isomorphisms
F ∼−→ F ∼−→ F̂ .

Definition 49. An orbital invariant on F in a Q-Algebra R is a degree compatible
map H : F −→ R, i.e., it holds that

H(Y ) = [Y : X] ·H(X) = deg(F ) ·H(X)

for all (finite) morphisms F : Γ′\B = Y � X = Γ\B of F .

In other words the condition describes a contravariant numerical functor deg :
F → R, t.m. with commutative diagrams

Y � //

F
����

H(Y ) H(PΓ′)

X � // H(X)

• degF=

OO

H(PΓ)

[PΓ:PΓ′]

OO

(23)

where • is nothing but the multiplication map (with degF - factor). Sometimes it
is convenient to express the factor in terms of index of the starting groups. If Z(Γ)
denotes the (finite cyclic) center of Γ and w its order, then we have the obvious
relation

[PΓ : PΓ′]=[Γ/Z(Γ) : Γ′/Z(Γ′)] = [Γ : Γ′]·[Z(Γ′) : Z(Γ)] = [Γ : Γ′]·w
′

w
· (24)

Important is the multiplicativity sitting in the categorial definition

deg(F ◦ F ′) = deg(F ) · deg(F ′)
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for all F ′ : Z → Y in F .

It is easy to transfer the notion to the (naturally isomorphic) compactified cate-
gories F̂ and F . This should be done in mind by the reader. We denote e.g.
simultaneously orbital heights by H on each of our open or compactified cate-
gories. Distinctions H, Ĥ,H are not necessary. We also use sometimes H(Γ) =
H(PΓ) = H(Γ\B) as in the above diagram.

The background are Haar measures. Denote byG the Lie group defining the ball B
and acting on it, say G = SU((2, 1),C). Take a G-invariant metric µ on B (known
as Bergmann metric in Differential Geometry) and let dµ be the corresponding
volume form on B. The volumes µ(Γ) :=

∫
F(Γ) dµ of fundamental domains of

ball lattices Γ are finite (by definition of lattice), especially for Picard modular
groups. Each such volume form defines an orbital invariant on F̂ in R. We can
choose Chern forms, especially the Euler or signature form, see Subsection 2.7,
Definition 42.

Example 50. The orbital Euler height He(X
′) =

∫
F(Γ′) γ2 and also the orbital

Signature height Hτ (X ′) =
∫
F(Γ′) τ2 have been essentially used for questions

around surface classifications. They can be expressed in terms of Riemann-Roch
and singularity theory. As important example we presented the heights of the
Eisenstein Congruence Surface in this manner, see Remarks 43.

3.1.2. Picard Modular Curves

Let Γ be again a Picard modular surface, say over K. Consider a K-disc D ⊂ B.
The quotient curve DΓ := Γ\D ⊂ Γ\B is called a Picard Modular curve (PMC).
All of them form the category D of Picard modular curves. The morphisms are
the finite coverings Γ′\D � Γ\D induced by a surface covering Γ′\B � Γ\B. We
illustrate the situation in the following diagram

DΓ′

f
����

Γ′\D �
� //

F |DΓ′����

Γ′\B

F
����

DΓ Γ\D �
� // Γ\B

(25)

The compactified extensions D̂Γ′ → D̂Γ or DΓ′ → DΓ restricting F̂ or F , respec-
tively, form the categories D̂ or D.

Definition 51. p ∈ D is called a Γ-cross point (of D) iff there exists an element
γ ∈ Γ \NΓ(D) such that and p ∈ D ∩ γD.
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In other words: γ moves D but not p. Or: The image point P of p along D →
DΓ = Γ\D is a curve singularity of DΓ. The Γ-equivalence for points on D is
stronger than the NΓ(D)-equivalence.

Definition 52. A sublattice Γ′ (of finite index) of Γ is called D-neat if it is neat and
has no Γ′-cross point.

In other words: for any γ′ ∈ Γ′ it holds that γ′D = D or D ∩ γ′D = ∅. For a
discussion we refer the reader to the original Definition 4.4.7 in [18] and the text
around. There one finds the following

Facts 53. • For any K-disc D ⊂ B and Picard modular group Γ (over K)
there exists a D-neat sublattice Γ′ of Γ.

• Any Picard curve DΓ = Γ\D (as above) has only finitely many curve singu-
larities.

We set shortly v = |ZΓ(D)|. It’s nothing else but the branch order of the covering
(reflection order, ramification index) of the covering F in Diagram (25) at the
quotient curve DΓ. The degree of the curve covering DΓ′/DΓ can be expressed as

[DΓ′ : DΓ] = [ΓD : Γ′D] =
[NΓ(D) : NΓ′(D)]

[ZΓ(D) : ZΓ′(D)]
=

[NΓ(D) : NΓ′(D)]

v : v′

with obvious notation v′ = |ZΓ′(D)|.

3.2. Orbital Curve Categories

For Riemann-Roch calculations around curves DΓ we need the embedding of the
compact curve DΓ in an open neighbourhood U ⊆ Γ\B. Namely, for orbital in-
variants we need data of surface and curve singularities living on DΓ, moreover
the branch order of the curve with respect to D and Γ. Instead of smaller neigh-
bourhoods - as used in earlier papers, e.g. in [21] - it suffices to take only the big
one U = Γ\B. So we thicken our open curves to DΓ, which is nothing else but the
curve together with its embedding

DΓ : DΓ
� � // Γ\B.

Definition 54. The thickened curve DΓ is called an orbital Picard modular curve
(on Γ\B).

An orbital covering is an embedding pair f = (f, F ) as in Diagram (25). More
simply, it is an embedding diagram
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DΓ′

ff
����

� � // Γ′\B

F
����

DΓ
� � // Γ\B

(26)

In this way we built the category D of open orbital Picard curves together with
orbital coverings as defined above as (only) morphisms. Via compactifications we
get in obvious manner the orbital categories D̂ and D. If we fix the imaginary
quadratic field K, then we get complete subcategories DK , D̂K ,DK of orbital
Picard modular curves over K.

The diagram

DΓ′′

gg
����

� � // Γ′′\B

G
����

DΓ′

ff
����

� � // Γ′\B

F
����

DΓ
� � // Γ\B

(27)

describes the multiplicativity of orbital morphisms in full details

f ◦ g = (f, F ) ◦ (g,G) = (f ◦ g, F ◦G) = fg.

3.2.1. Orbital Invariants for Orbital Curves

Definition 55. A (rational) orbital invariant

h : D −→ Q

is a multiplicative numerical functor on D satisfying

h(D) = [D : C] · h(C) where [D : C] =
[D : C]

w : v
=

[ΓD : Γ′D]

w : v

for orbital curve coverings D � C in D with branch orders v = vC and w = vD.
The numbers v, w are also called (orbital) weights.

The single value h(C) is called the orbital hight (w.r.t. h) of the orbital curve
C = DΓ.
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Example 56. Let us take a curve-degree compatible numerical hight functor
h : D → Q. This means that for all covering f : DΓ′ � DΓ in D it holds
that

h(DΓ′) = [DΓ′ : DΓ] · h(DΓ).

We orbitalize it to the obital invariant h : D→ Q by setting

h(D) =
1

w
h(D).

It is easy to check that (with notations of Definition 55)

h(D) =
1

w
h(D) =

[D : C] · h(C)

w
=

[D : C] · v · h(C)

w
= [D : C] · h(C).

So we orbitalize the Euler and signature heights in Definition 40 to orbital Euler
respective signature invariant on D. The second formula there shows that the
branch orders are very necessary. This is the reason for the change from simple
heights to (fat) orbital invariants. The branch orders will be most important in the
next section preparing Heegner series.

3.3. Orbital Intersection Products

It becomes convenient to work in the category D̂ of BB-compactified orbital Picard
curves. We restrict ourselves to a fixed imaginary quadratic number field K. So
we work only with Picard modular groups Γ commensurable with the full one
U((2, 1),OK) and the compactified quotient surfaces X̂Γ = Γ̂\B. Each K-disc D
defines an (embedded) Orbital Picard Modular Curve D̂Γ : D̂Γ ↪→ X̂Γ in D̂K , cf.
Definition 54.

We orbitalize first the well-known divisor groups

Div S =
⊕
C⊂S

Q · C

on compact algebraic surfaces S (where C runs through all irreducible compact
algebraic curves on S). There is a nice intersection product on complex compact
normal algebraic surfaces for the generating curves C. The definition goes back to
Mumford, (later Fulton). It can be Q-linearly extended to a Q-bilinear form

( · ) : Div S ×Div S −→ Q.

For orbitalization we fix Γ and define on X̂ = X̂Γ as above the formal Q-vector
space

Div X̂ =
⊕

D̂Γ⊂X̂Γ

Q · D̂Γ
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generated by the OPM curves D̂Γ on X̂Γ, see Definition 54 again.

For two OPM curves Ĉ, D̂ of orbital weight w respectively v on X̂ we define the
orbital intersection

(Ĉ · D̂) =
(Ĉ · D̂)

v · w
·

It can be Q-bilinearly extended to the orbital intersection on the OPM divisor
group

Div X̂ ×Div X̂ −→ Q.

For any neat Picard modular congruence subgroup Γ0 = Γ(a) ⊆ Γ the curve in-
tersections of curves on the (smooth) compactified model Γ0\B have been also
well-understood by Cogdell [5]. Locally, everything is clear. We use finite cover-
ings to push down intersection products from neat surface models to arbitrary OPM
surfaces. It is a longer procedure through Riemann-Roch, curve and surface sin-
gularities to realize this way in termes of geometric local and global Galois theory.
For details we refer to [21] and [22].

Important was the construction of direct and inverse images along finite coverings
F : Ŷ → X̂ of PM surfaces

F# : Div Ŷ −→ Div X̂, F# : Div X̂ −→ Div Ŷ .

We proved the Orbital Projection Formula

(F#B ·A) = (B · F#A)

where A ∈ Div X̂, B ∈ Div Ŷ are cycles on the PM surfaces X̂ or Ŷ , respec-
tively.

This is the escalator we need for shifting intersection products from neat PM sur-
faces to non-neats and vice versa along finite coverings: From well-understood to
less-understood intersection products.

3.4. Orbital Heegner Functionals

We consider (rational) functionals

fX̂ : Div X̂ −→ Q

on orbital divisor groups on a PM surface X̂ .

Definition 57. We call a set f̌ = {fX̂ ; X̂ ∈ D̂K} an orbital functional on D̂K iff it
is compatible with orbital direct images along finite coverings F : Ŷ → X̂ . This
means that fX̂ ◦ F# = fŶ holds for all finite orbital coverings F in D̂K .
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We repeat the definition of the orbital Heegner functional presented first in [21,
3.4]. First remember to norms n(D) ∈ N+ of K-discs D. It can be find in Subsub-
section 3.3, Definition 18, only for K = Q(

√
−3). But it works also in all cases,

whenOK is an principal domain: D is the ortho-disc of a primitiveO-vector a and
n(D) = n(a). We set also for the image curve DΓ on X = XΓ = Γ\B (also for
smooth and other compactifieed models)

n(D̂Γ) = n(DΓ) = n(Γ\D) = n(D).

Definition 58. For N ∈ N+ we call the reduced Weil-divisor

HN = HN (X̂Γ) =
∑

n(D̂Γ)=N

D̂Γ (28)

the Heegner divisor of norm N on X̂Γ, (set 0, if the sum is void). Taking the
orbitalized curves in the sum, we get the orbital Heegner divisors HN = HN(X̂Γ).

Moreover we introduce on X̂Γ the orbital Heegner functionals

hN : Div X̂ −→ Q, Ĉ 7→ 〈Ĉ,HN〉.

We construct from them the formal series (with independent variable q)

H(q) =
∞∑
N=1

hN · qN .

We apply now simultaneously the functionals to an irreducible orbital curve Ĉ on
X̂ to get the formal power series

H
Ĉ

(q) =
∞∑
N=1

hN(Ĉ) · qN ∈ Q[[q]]. (29)

It is called the formal orbital Heegner series for Ĉ. In [21] between Definitions
3.5 and 3.6 we included also h0, but it does not play any role in the actual article.
It is componentwise clear that

H
D̂

(q) = [D̂ : Ĉ] ·H
Ĉ

(q) (30)

for any orbital curve covering D̂ of Ĉ, see also [21, formula (11)].

We fill our formal series with more life substituting q by e2πiτ , τ ∈ H, the upper
half plane.
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Definition 59. The series

Heeg
Ĉ

(τ) = h0 +

∞∑
N=1

hN(Ĉ) · q2πiNτ

(with h0 uniquely defined, see Remark 62, below) is called the orbital Heegner
series of the orbital Picard curve Ĉ.

3.4.1. Modular forms of Nebentypus

Remember the classical congruence subgroups (m ∈ N+)

Γ0(m) =

{(
a b
c d

)
∈ SL2(Z) ; c ≡ 0 mod m

}
of the modular group SL2(Z) acting on the upper half place H. Let, moreover

χ = χK : Z→ {0,±1}, h 7→
(−DK/Q

h

)
(Legendre symbol)

be the Dirichlet character of the imaginary quadratic number field K. It factorizes
through the residue ring modulo the discriminant DK/Q.

Definition 60. A holomorphic function f(τ) on H is called modular form of weight
k ∈ N, level N ∈ N and Nebentypus χ, iff it satisfies the following functional
equations

f

(
aτ + b

cτ + d

)
= (cτ + d)kχ(d)kf(τ),

(
a b
c d

)
∈ Γ0(N) (31)

(and f has meromorphic extensions to the cusps). If it is 0 at the cusps, we call
it a cusp form. The space of modular forms of weight k, level N and Dirichlet
character χwill be denoted byMk(N,χ). It is a finite-dimensional C-vector space.

In my paper [22, 7.4] one can find the following

Theorem 61. With suitable h0 = h0(Ĉ) the Heegner seriesHeeg
Ĉ

(τ) of a Picard
curve Ĉ of the field K is a modular form belonging to Mk(m,χK).

Remark 62. Since a non-zero constant cannot satisfy (29), it does nott belong to
Mk(m,χK). Therefore the constant h0 is uniquely determined by the modular
property of the series. It can be expressed in terms of the orbital Euler number of
Ĉ (Cogdell [5]).
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Remark 63. The above theorem was first proved by Cogdell in [5] for neat con-
gruence subgroups. The extension of the result to all Picard modular groups one
can find in my papers [21] and [22].

3.5. Hecke’s Explicit Construction of Modular Forms of Nebentypus

Hecke’s notation of the space of modular forms of Γ of weight k, where Γ is a
subgroup of finite index of ⊆ SL2(Z), is

Mk(Γ) =

{
f ∈ Hol(H) ; f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(
a b
c d

)
∈ Γ

}
. (32)

Keep in mind the meromorphic condition at cusps, after Definition 60 for all mod-
ular forms considered in this paper.
Well-defined in many textbooks about modular forms is the congruence subgroup

Γ1(N) =

{(
a b
c d

)
≡
(

1 b
0 1

)
mod N

}
⊆ SL2(Z).

Obviously, we have the exact sequence of groups

1 −→ Γ1(N) −→ Γ0(N) −→ (Z/NZ)∗ −→ 1

(
a b
c d

)
7→ d.

For any γ =

(
a b
c d

)
∈ SL2(Z) Hecke uses the operation (from the right) f |γk :

= (cτ + d)−kf(γ(τ)), see also [28, § 2.1]. Then the Definition in (32) is extended
to modular forms of Nebentypus χ

Mk(N,χ)=

{
f ∈Mk(Γ1(N)) ; f |γk=χ(d)·f, γ ∈

(
a b
c d

)
∈ SL2(Z)

}
. (33)

It is easy to verify that the functional conditions in (31) and (32) are the same.
Helpful are the following facts

� For odd primes N = p and k ≡ p− 1

2
is χ =

(
•
p

)
the quadratic residue

modulo p ([14, p. 810]). Especially M3(3, χ) = M3(3,
(•

3

)
).

�
(•

3

)
=

(
3

•

)
=

(
−3

•

)
(for MAPLE-application “jacobi(−3, n)”).

� InM3(3) there exists no (non-zero) cusp form of Nebentypus
(

3

•

)
, see [14,

Proposition 10, p. 817].
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� There are precisely two linearly independent Eisenstein series in M3(3) of

Nebentypus
(

3

•

)
, see [14, Proposition 12, p.818], (with q = e2πiτ accor-

ding to [14, equation (20), p. 811]).

E1(τ) =

∞∑
n=1

c1(n)qn, c1(n) =
∑

0<d|n

d2χ(n/d)

E2(τ) =A+

∞∑
n=1

c2(n)qn, c2(n) =
∑

0<d|n

d2χ(d).

(We do not need Hecke’s explicit determination of A = − 35/2

(2π)3
·2 ·

∞∑
n=1

χ(n)n−3)

E1 = q + 3q2 + 9q3 +O(q4), E2 = A+ q − 3q2 + q3 +O(q4).

3.6. Heegner Series for Picard-Curves of Eisenstein Type

Let Γ be a Picard modular group of the field K = Q(
√
−3) of Eisenstein numbers

and X̂Γ the BB-compactified quotient surface Γ\B. For simplicity we assume that
Γ is a sublattice of Γ(

√
−3). Take moreover one of the discs D of norm 1, e.g.

the orthogonal disc of d2,4 =
(

1
0
0

)
in Definition 12 visualized in Fig. 2 joining the

cusps −1 and +1. The embedded quotient curve of D on X̂Γ is denoted by D̂, that
on P2 = XΓ(

√
−3) by T̂.

According to Definition 11.3 we have to calculate the first coefficients

hN(T̂) = 〈T̂,HN〉
of the Heegner series. Since T̂ is a line on the projective plane P2 its intersection
with any plane curve B is coincides with the degree degB. Moreover we know
the weight v(T̂) = 3 (branch index). So

〈T̂, Ĉ〉 =
1

3
· deg(Ĉ). (34)

We know all curves of norm one, namely: Ĉj , j = 1...6. These are the lines of
the quadrilateral visualized in Fig. (2.2). They are also the components of branch
locus of the covering B̂→ X̂Γ(

√
−3). For any irreducible plane curve Ĉ one gets

〈T̂, Ĉ〉 =
1

3
· deg(Ĉ)

v
Ĉ

=


1

9
, if Ĉ = Ĉj , j = 1 . . . 6

1

3
· deg(Ĉ), else.
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So

〈T̂,H1〉 = 〈T̂,C1〉+ ...+ 〈T̂,C6〉 =
2

3
, 〈T̂,H2〉 =

1

3
· deg(H2) (35)

because H2 has no component of the branch locus. To get the Heegner series as
explicit linear combination of Hecke’s Eisenstein series Heeg

T̂
(τ) as linear com-

bination of Hecke’s Eisenstein series E1, E2 (see the end of Section 3.5) we must
know

• A) dimM3(3, χ) = 2

• B) H2 is the sum of three lines (of weight 1).

From B) and (35) it follows that

< T̂,H2 > =
1

3
+

1

3
+

1

3
= 1.

Now we have to solve

x · E1 + y · E2 = ...+ (x+ y)q + (3x− 3y)q2+ = ...+
2

3
q +

3

3
q2 + ...

With the unique solution x =
3

2
, y =

1

2
we obtain

3 ·Heeg
T̂

(τ) =: Heeg
T̂

(τ)

=
3

2
· E1 +

1

2
· E2 = ...+2q + 3q2+14q3+ ...+ 〈T̂ ,HN〉qN+ ...

= ...+ 〈T̂ ,H1〉q + 〈T̂ ,H2〉q2 + 〈T̂ ,H3〉q3 + ...

With the explicit knowledge of Hecke’s two basic Eisenstein series E1, E2 (end
of Section 3.5) we can determine precisely each qN -coefficient (N > 0) of the
Heegner series. For the first 8 we have calculated 3

Heeg
T̂

(τ) = a+2q+3q2 +14q3 +26q4 +24q5 +39q6 +100q7 +51q8 + ... (36)

Theorem 64. The Heegner series of the Picard line T̂ ↪→ P2 (of norm 1) is

Heeg
T̂

(τ) = a+
∞∑
n=1

∑
0<d|n

d2 ·
[(

d

3

)
+

(
n/d

3

)] · qn (37)

3We determined the constant term with the help of Hecke’s article [13, §3], a = −1/18.
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We have to prove the items A) and B). We start with the
Proof of B). The dimension of the vector space M3(Γ0(3), χ) will be calculated
with a formula of Cohen/Oesterlé [6].

Proposition 65 ([6]) . For k ∈ Z it holds that

dimSk(Γ0(N,χ))− dimM2−k(Γ0(N,χ))

=
k − 1

12
N
∏
p|N

(1 +
1

p
)− 1

2

∏
p|N

λ(rp, sp, p)

+ εk ·
∑

x mod N
x2≡−1 mod N

χ(x) + µk ·
∑

x mod N
x2+x≡−1 mod N

χ(x).

Thereby is rp the exponent of p in the prime decomposition of N , and sp is the
p-exponent of the führer f(χ) of the character χ. Moreover the authors of [6]
defined

λ(rp, sp, p) =


pr
′
+ pr

′−1, if 2sp ≤ rp = 2r′

2pr
′
, if 2sp ≤ rp = 2r′ + 1

2prp−sp , if 2sp > rp

εk =


0, if k odd
−1
4 , if 2sp ≤ rp = 2r′ + 1
1
4 , if 2sp > rp

, µk =


0, if k ≡ 1 mod 3
−1
3 , if k ≡ −1 mod 3

1
3 , if k ≡ 0 mod 3.

Corollary 66. It follows that dimM3(Γ0(3), χ3) = 2.

Proof of A)4. We have to set N = 3, k = −1, χ = χ3. Then

f(χ3) = 3, r3 = 1, s3 = 1, ε−1 = 0, µ−1 =
−1

3
and dimS−1(Γ0(3), χ3) = 0.

Hence

0−dimM3(Γ0(3), χ3)

=
−2

12
· 3 · (1 +

1

3
)− 1

2
λ(1, 1, 3) + 0− 1

3
·

∑
x mod 3

x2+x≡−1 mod 3

χ3(x)

and finally:−dimM3(Γ0(3), χ3) =
−2

3
− 1

2
· 2− 1

3
χ3(1) = −2. �

4The proof (including reference [6]) was found by my former PhD student Christian Schön.
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Proof of B). It is easy to see, that in F2,1 the only vectors of F-norm −1 are

±

1
1
0

 , ±

 1
−1

0

 , ±

0
0
1

 .

Preimages in O2,1 of norm 2 along the residue map are

±

1
1
0

 , ±

 1
−1

0

 , ±

√−3
0
1

 . (38)

All other norm 2 vectors in O2,1 are Γ(
√
−3)-congruent to one of them. We can

draw two of the three orthodiscs of the above vectors (green)5.

Figure 3. Extended ramifying disc configuration. Figure 4. Extended quadrilateral.

The (green) diagonal disc D is a Γ-reflection disc, pointwise fixed by the reflection

σ =

0 1 0
1 0 0
0 0 1

.

The quotient curves of the three orthodiscs of the vectors (38) on the Eisenstein
Congruence Surface P2 are all three visible. They must be S4-reflection lines on
P2. For instance σ goes down to an effectively on P2 acting element of order two
leaving pointwise fixed the (green) image line L of D. It goes through two of the
double points of the quadrilateral (look back to Fig. 1 and also to Proposition 17 at
the end of Subsubsection 2.3.2.).

Altogether: The Heegner divisor H2 has precisely three curves on P2. They do not
belong to the Γ(

√
−3)-branch divisor on P2. Therefore

H2 = L1+L2+L3. �
5Can be seen only in online version.
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