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Abstract

In [Ho02] we counted indefinit metrics (two-dimensional, integrally
defined, over Gauß numbers) with a fixed norm (discriminant). We
would like to call them also indefinit class numbers. In this article we
change from Gauß to Eisenstein numbers. 1 We have to work on the
complex two-dimensional unit ball, an Eisenstein lattice on it and the
quotient surface. It turns out that the compactified quotient is the
complex plane P2. In the first part we present a new proof of this fact.
In the second part we construct explicitly a Heegner series with help
of Legendre-symbol coefficients. They can be interpreted as ”indefinit
class numbers” we look for. Geometrically they appear also as number
of plane curves with (normed) Eisenstein disc uniformization. 2

1It is historically interesting that H. Poincaré extended 1883 (see [Poi]) reduction theory
of binary forms from Gl2(Z)-applications to Gauß and Eisenstein integers. It is better
explained in Bianchi’s paper [Bia]

2Mathematics Subject Classification: 11F11, 11F27, 11F30, 11F55, 11F66, 11G15,
11M41, 11R52, 14C17, 14C20, 14E20, 14G35, 14H30, 14H45, 14J17, 14J25, 20H05, 20H10,
30F45, 32M15, 32S25, 32S45, 44A15 Key words: Arithmetic groups, unit ball, Picard
modular surfaces, Kahler-Einstein metric, constant curvature, arithmetic curves, Shimura
curves, modular curves, geodesics, modular forms, surface singularities, orbital divisors,
rational intersection theory, orbital functionals, Zeta functions
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0 Preface
We consider 2-dimensional submetrics of the 3-dimensional hermitian in-
definit unimodular diagonal metric. The latter is defined by the sesquilinear

form <,> with Gram matrix Dg =
(

1 0 0
0 1 0
0 0 −1

)
. The complex hermitian space

(C3, <,>) is denoted by C2,1. Let K be an imaginary quadratic number field
and O = OK the ring of integers in it. In C2,1 sits the indefinit hermitian lat-
tice O2,1 = (O3, Dg). Main objects of our study are indefinit 2-dimensional
hermitian sublattices E of O2,1. We restrict ourselves through the paper
to fields K with class number 1, mainly to the field Q(

√
−3) of Eisenstein

numbers. Then E and its orthogonal O-line L ⊂ O2,1 have 2 respectively 1
O-generator(s). The latter is uniquely determined up to an O-unit factor:
L = Ol, where l is a primitive O2,1-vector. The norm n(E) is well-defined
as norm n(l) =< l, l >.

Let V− = {z ∈ C2,1; n(z) < 0} be the set of complex negative norm
vectors. The 2-dimensional complex unit ball B consists of the negative
lines in the projective plane:

B = PV− = V−/C∗ ⊂ PV = V/C∗ = P2.

We restrict the group action of U((2, 1),C) on B to the arithmetic subgroups
Γ ⊆ U((2, 1),O) of finite index. The quotients Γ\B are normal complex alge-
braic surfaces. The same is true also for their compactifications considered
in ths article. They are called Picard modular surfaces. Refinements and
extensions you find in 1.1. For basic definitions and properties I refer to my
book [BSA].

We continue with sublattices E ,L ⊂ O2,1 as above, but admit all sub-
metrics of V . Tensoring with R yield a hermitian plane E respectively a
line L in V . Excluding positive definitness, we get non-zero intersections
E− = E ∩V− , L− = L∩V−. Their P-projection to B is a disc E = PE− ⊂ B
respectively a point λ = PL− = PL ∈ B. They come with discriminants and
norms heritaged from E or L, respectively.

In Chapter I we concentrate ourselves to the Eisenstein Congruence Sub-
group (ECS) Γ(

√
−3) ⊂ U((2, 1),OQ(

√
−3)) and its ball quotient surface

XΓ(
√
−3) := Γ(

√
−3)\B with (smallest) compactification X̂Γ(

√
−3). Inves-

tigating a special system of partial differential equations E.Picard (1883)
saw a close connection between the ball, the ECM and the complex plane.
But he could not correctly prove it. It needed a long mathematical process
for doing that. With strong results of P.Deligne and G.Mostow around 1970
I was able to prove that X̂Γ(

√
−3) = P2. 3 Here we give a new (more direct)

proof without use of Deligne’s result. The whole Chapter I is dedicated to
the surface classification of X̂Γ(

√
−3). An essential role plays the ramification

3First published together with historical background and motivations in my book
[EPD].
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locus of the (locally finite) covering B→ XΓ(
√
−3). It consists of all discs of

discriminant −1. The image of them (branch locus) are six smooth curves.
A preview with pictures (restricting to real points, naturally) is presented
in Subsection 1.2. It gives a guideline of vision for the later proof steps.

In the Sections 2 - 5 (look at the Table of Contents) we collect and prove
all details we need for the classification attacks in the last two Sections
of the first chapter. There we have to verify the smoothness of the ECS
X̂Γ(

√
−3). But also rationality and smoothness of the irreducible branch

curve components must be shown. Then the Chern invariants of surface
and curves will be determined. Here we used L-series values (proved by
means of higher number theory) and Proportionality Theorems, both in
[BSA]. Last not least we need a celebrated Theorem of Miayaoka -Yau on
classification of surfaces with extreme Chern numbers. At the end we have
P2 with branch locus consisting of six embedded lines arranged as complete
quadrilateral, see Picture in Subsection 1.2.

The main result of Chapter II is Theorem 13.1. It counts the curves on
P2 of Eisenstein norm N . If, for instance, N ∈ N+ is not divisible by 3 then
this cardinality is equal to

hN =
∑

0<d|N

d2 ·
[(

d

3

)
+

(
N/d

3

)]
. (1)

Thereby
(
t
3

)
is the quadratic rest symbol. A simple modification is necessary,

if 3|N , see Section 13 for details. The hN
′s appear as coefficients of an

Heegner series. Its explicit construction for our Eisenstein curves is the
main goal of Chapter II, one can say: of the whole article.

More precisely, we call the above plane curves also Picard-Eisenstein
Curves (PEC). These are the (irreducible) P2-curves Ĉ, which have along the
ball quotient morphism B � Γ(

√
−3)\B a disc D of norm N as uniformizing

preimage:

B // // Γ(
√
−3)\B �

� // P2

D // //?�

OO

Γ(
√
−3)\D
?�

OO

� � // Ĉ
?�

OO

Basic reference for Chapter II is my article [Ho02], extended in [Ho07].
In Sections 8 and 9 we remember to the construction of ”orbital invariants”
on commensurability classes of Picard modular surfaces and curves. In this
framework we explain the notions of ”orbital hights”, ”orbital curves”,”orbital
intersection products” of them. 4 My work in the just cited papers extended
Cogdell’s result to all Picard modular surfaces. In the article of 2002 I could

4Historical starting point was Cogdell’s thesis publication [Cog], dedicated to neat
Picard modular congruence subgroups, where the connection with elliptic modular forms
of Nebentypus was found.
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explicitly found the Heegner series of the Picard-Gauß plane P2 = X̂Γ(1+i).
Explicit knowledge of Koblitz’ work on modular forms, see [Kob]. In the
mean time we discovered in the work of Erich Hecke (1887 - 1947) explicit
constructions of Eisenstein series ∈Mk(n, χ), see [He35],[He40],[He59]. They
are of type we look for: weight k, level n, discriminant-Nebentypus χ, see
Section 12.

For the field K = Q(
√
−3), of Eisenstein numbers with Nebentypus-

character χK(n) =
(−3
n

)
the relevant space M3(3, χK) is 2-dimensional. For

a proof we used a dimension-formula of Oesterlé-Cohen [C-O]. On the other
hand Hecke’s articles present two linearly independent series in M3(3, χK).
So, the latter space of modular forms is generated by two explicitly known
Hecke- Eisenstein series E1, E2 (reproduced at the end of Section 12. With
our combination of arithmetic- geometric methods we calculated the two
first coefficients h1 and h2 in the general formula 1. Since the Heegner series
belongs also to M3(3, χK) = CE1 + CE2 we can determine precisely its
E1, E2- linear combination (see Theorem 13.1 again).

Chapter I (Sections 1 - 7)
The Eisenstein Congruence Surface

Chapter II (Sections 8 - 13)
Heegner Series of Picard Modular Surfaces
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1 Introduction

1.1 Symbols, Notations

Pk = PkC denotes the k-dimensional complex projective space. K = Q(
√
−d)

is an imaginary quadratic number field, d ∈ N+, squarefree. OK denotes
the ring of integers in K, h(K) the class number of K. The modules/spaces
On+1,Kn+1,Cn+1, will be endowed with the unimodular indefinit hermitian
metric < ., . > with Gram diagonal matrix

+1 0 . . . 0 0
0 +1 0 . . 0 0

.....

.....

.....
0 . . . 0 +1 0
0 . . . . 0 −1


w.r.t. the canonical basis. The corresponding hermitian O-modules/spaces
are denoted by On,1,Kn,1 or Cn,1, respectively.

Let generally V be an (n + 1)-dimensional hermitian C-vector space
of signature (n, 1). Looking at norms w.r.t. hermitian sesquilinear form
h =< ., . > we will speek about negative, positive or cusp vectors v, if
the norm n(v) = < v, v > is negative, positive, or zero, respectively. We
introduce the notations

V− = {v ∈ V ; n(v) < 0}, V+ = {v ∈ V ; n(v) > 0}, V0 = {v ∈ V ; n(v) = 0}

The complex lines in V through the 0-point will be identified with the points
of the n-dimensional projective space Pn. The negative vectors project along
V → Pn = PV (keep in mind that you have to exclude the O-vector in V )
onto the n-dimensional (complex unit) ball Bn. The projection maps V0 onto
the boundary ∂B of the ball. We will always assume, that V is generated
by a hermitian K-space VK with hermitian product hK , K as above. Notice
that V = VC = VK ⊗ R, hK : VK × VK → K.

From now on we concentrate ourselves to the second dimension. We
call B := B2 the (complex two-dimensional) unit ball. With D we denote
generally a complete linear subdisc of B. It is defined as non-void intersection
of complex projective line L with our fixed ball B. Consider the projective
projections

V−
� � //

����

V

����
B �
� // P2

(2)

again (with three-dimensional complex vector space V . A (complete linear)
subdisc D of our fixed ball B is a non-void intersection of a projective line
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L with B. Look at the lower rectangle of the following diagram:

E �
� //

����

V

p
����

L �
� // P2

B ∩ L = D �
� //?�

OO

B
?�

OO

(3)

In the upper part E denotes a subplane of V projecting projectively onto
the line L along p.

Definition 1.1 D is called a K-disc, iff the line embedding in the above
diagram is defined over K. It’s the same to say, that the L covering the
plane E is a K-defined subplane of V . Equivalently: one has two different
K-points on L (or on D).

The action of unitary group U((2, 1),C) ⊂ Gl3(C) on V ∼= C3 is com-
patible with the hermitian structure. Therefore it induces an action on V−.
Dividing out the ineffectively acting central diagonal subgroup, the unitary
action goes down to that of PU(2, 1) on our ball. The corresponding actions
are called fractional transformations.

Now fix the imaginary quadratic number field K, also O = OK .

Definition 1.2 The arithmetic group Γ2,1 = U((2, 1),O) is called the full
Picard modular group of the field K. Any subgroup Γ of U((2, 1),K), com-
mensurable with Γ2,1, will be called Picard modular group (or P.m. lattice).

Well-known (e.g. from [BSA] and/or references there) are the following

Facts 1.3 The quotient surface Γ\B is an (open, t.m. non-compact) normal
complex algebraic surface. The same is true for its Baily-Borel compacti-

fication (BB) Γ̂\B. Both types are called Picard modular surfaces. Adding
finitely many (normal) points one gets the BB compactification from the
open model. These points are called cusp points or cusp singularities.

With the notations

∂KB = ∂B ∩K2, B̂ = B ∪ ∂KB

we get the inclusion diagram with vertical surjections

B

����

� � // B̂

����

Γ\B �
� // Γ̂\B
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Most important Picard modular subgroups of Γ (as above) are the con-
gruence subgroups of O-ideals a. They are defined as

Γ(a) = {γ ∈ Γ; γ ≡ E mod a},

where E is the unit matrix of order 3.
We would like to define arithmetic curves on Picard modular surfaces.

For this purpose consider a K-disc D in B (in the sense of Definition 1.1)
together with a Picard modular lattice Γ. The subgroup of all its elements
γ acting on D itself is denoted by NΓ(D). It is called the normalizer group
of Γ and D. Dividing out the ineffective (on D acting) kernel ZΓ(D) we get
the effective on D acting Fuchsian group ΓD := NΓ(D)/ZΓ(D). The quotient
curve Γ\D is an (sometimes open, sometimes compact) algebraic curve sit-
ting on Γ\B. In general, there exist curve singularities on it. Its closure on
any compactification Γ\B of Γ\B is denoted by Γ\D. The resolution of sin-
gularities of this curve is nothing else but the BB-compactfied quotient curve

Γ̂D\D). Altogether we illustrate the situation in the following commutative
diagram of embeddings and surjections:

D̂

����

D? _oo

����

� � // B �
� //

����

B̂

����

ΓD\D̂

desing "" ""DDDDDDDD
Γ\D? _oo
� _

clo
��

� _

sure
��

� � //
� p

!!BBBBBBBB
Γ\B �

� //
� _

��

Γ̂\B

Γ\D // //
44Γ\B Γ̂D\D
?�

closure

OO

(4)

where D̂ := D ∪ ∂KD with the set ∂KD = ∂D ∩K B of K-rational boundary
points of our disc.

By the way, the K-boundary points of D or B are called cusps of these
objects. Their image points along the left or right vertical arrows of the
above diagram are called cusp points of the curve or surface, respectively.

Definition 1.4 Let D be a K-disc, Γ a Picard modular group of K and
Γ\B the corresponding Picard modular surface. The image curve Γ\D on
the surface will be called a K-arithmetic curve or Picard modular curve
(PM-curve). We use the same notation for the compactifications of this
curve on the surfaces appearing in (4).

1.2 Preview: Picard modular surfaces of Eisenstein numbers

We fix now K = Q(
√
−3), known as field of Eisenstein numbers. The

ring of (integral) Eisenstein numbers is the unique factorization domain

O = OK = Z + Zω, where ω = e
2πi
3 is one of the two primitive third
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unit roots. Main objects of this paper will be the congruence subgroup
Γ(
√
−3) := Γ2,1(1 − ω) of the principal O-ideal (1 − ω) generated by the

O-prime element 1− ω of norm 3.

Theorem 1.5 ([EPD]). The BB compactification ̂Γ(
√
−3)\B is the projec-

tive complex plane P2. There are precisely four cusp points on it. The six
lines through pairs of them is the (compactified) branch locus of the quotient
morphism B→ Γ(

√
−3)\B.

We visualize the (compactified) branch curve in Picture ref1.5 below
(real part). The configuration is known as complete quadrilateral on the
complex plane P2. The ramification locus on B consists of infinitely many
discs: the Γ(

√
−3) - orbit of the six ramification discs drawn in Picture

ref1.6 below (real cut). Representative Γ(
√
−3)-cusps, covering (all four)

plane cusp points along the cusp-extended quotient morphism (see Diagram
ref3), are marked by little red diamonds in the pictures.

Picture 1.1: Branch locus Quadrilateral

(5)

We fix a numeration (1,2,3,4) of the cusp points. It allows us to denote each
branch line by the two cusp points lying on it. For instance L1,2 = L2,1 is
the line through the points ”1” and ”2”.

Corollary 1.6 The branch/ramfication index at each of the six lines/discs
is equal to 3.

9



Picture 1.2: Covering ramfication discs

(6)

Here the numbers ±1 are nothing else but the x-coordinates on the horizon-
tal disc or the y-coordinates on the vertical one, respectively. More precisely,
we marked the cusps by (affine) coordinates.

κ1 = (1, 0), κ2 = (0, 1), κ3 = (−1, 0), κ4 = (0,−1) (7)

The disc joining the two cusps κi and κj , 1 ≤ i < j ≤ 4, will be denoted by
Di,j . Blue points represent (R-visible) intersection points of two ramification
discs. Also their projections along the quotient morphism B→ Γ(

√
−3)\B =

P2 are marked by the same color. On P2 (all) three of them are R-visible,
drawn in Picture 1.2.

Remark 1.7 In this paper we will give a new proof of the statements of this
subsection. It is - other than in my book [EPD] - essentially supported by the
branch locus. My doctor-grandmother Emmy Noether emphasized a century
before today the important role of ramifications. It’s my aim to improve it
geometrically in dimension 2.

The proof will be finished at the end of Section 7.

Remark 1.8 With

G =

( √
−3
2

0 −
√
−3
2

0 1 0
1 0 1

)
, N =

(
0 0 − 1√

−3

0 1 0
1√
−3

0 0

)

the hermitian spaces C2,1 = (C3, Dg) and (C3, N) are isometric. Namely
the Gram matrices Dg and N are conjugated to each other: tG ·N ·G = Dg.
It defines the isometry

Θ : V = C2,1 ∼−→ (C3, N) = V ′ , c 7→ Gc
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It induces an isomorphism of unitary groups:

U((2, 1),C) = U(Dg,C)
∼−→ U(N,C) , A 7→ G−1AG

It restricts to the unitary subgroups with coefficients in K = Q(
√
−3). The

image of the Picard modular Eisenstein lattice Γ(
√
−3) lands in the com-

mensurability class of ∆ = U(N,O), say Γ′ = G−1Γ(
√
−3)G.

Cogdell established the Heegner series for neat principal congruence sub-
groups ∆(α), α ∈ OK . I explained ([Ho02], [Ho07]) how Heegner’s con-
struction extends to all members of the commensurability class of ∆. We
pull the pair (V ′,Γ′) back along the isometry Θ to (V,Γ(

√
−3)). Along this

way we get the same Heegner series for Γ(
√
−3) and G′. We get also the

same quotient surface P2 for both arithmetic groups. Also the plane curve
interpretions are the same.

2 Unimodular sublattices

We fix an imaginary quadratic number field K, for simplicity of class number
1. Moreover, the ring O = OK of K-integers is assumed to be a unique
factorization domain (Gauß and Eisenstein numbers belong to this class).
For any hermitian O-sublattice Λ of O2,1 of O-rank 1, 2 or 3 we define the
dual lattice as O-module

Λ# = {x ∈ Λ⊗K; < x, l > ∈ O; for all l ∈ Λ}.

Notice that Λ ⊆ Λ# with equality if and only if Λ is unimodular. Equiva-
lently: The discriminant dcr(Λ) is equal to ±1. Thereby the discriminant of
Λ is defined to be the determinant of the Gram-Matrix of an O-basis of Λ
with respect to the hermitian form. It is defined up to multiplication with
a norm unit of O.

Two subsets M,N of K2,1 are said to be orthogonal, iff < m,n >= 0 for
all m ∈M,n ∈ N . We write M⊥N in this case. Orthogonal direct sums of
lattices are written as M �N . The orthogonal complement of M ⊆ O2,1 in
O2,1 is the sublattice

M⊥ = {n ∈ O2,1; n⊥M}.

Obviously, the discriminants of orthogonal lattices M,N ⊆ O2,1 behave
multiplicatively:

dcr(M �N) = dcr(M) · dcr(N). (8)

Two sublattices M,N of Λ are called orthogonal complementary (in O2,1),
iff M ∩N = {o}, M⊥ = N and N⊥ = M .

Fact 2.1 ([Apo], Prop. 6.1). If M and N are orthogonal complementary
sublattices of O2,1, then M#/M ∼= N#/N as O-modules.
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Corollary 2.2 Under the above conditions it holds that: M is unimodular
if and only if N is unimodular.

Corollary 2.3 Let M be an indefinit rank-2 sublattice of O2,1 and G its
orthogonal complement in O2,1, say G = Oc. Then −dcr(M) = n(c) > 0.

Hint. Express M# : M in terms of the discriminant of M , do the same
with G# : G and compare.

�

Examples 2.4 A central role will play the following six norm 1 vectors di,j
together with their orthogonal planes Ei,j, 1 ≤ i < j ≤ 4, (of discriminant
−1):

E1,2⊥d1,2 =

1
1
1

 , E1,3⊥d1,3 = t

0
1
0

 , E1,4⊥d1,4 =

 1
−1
1

 ,

E2,3⊥d2,3 =

−1
1
1

 , E2,4⊥d2,4 =

1
0
0

 , E3,4⊥d3,4 =

 1
1
−1

 ,

(9)

The unimodular plane Ei,j is generated by the i-th and j-th column Ci, Cj ,
respectively, of the following ”cusp matrix” (all 4 columns are cusp vectors):

C =
(

1 0 −1 0
0 1 0 −1
1 1 1 1

)
(10)

The projective projections of the Ci (see Diagram 3, Section 1 are the four
cusps κi = PCi, i = 1..4. We visualized them in Picture 1.2 at the end
of Section 1. Consequently, the P-projections of the planes Ei,j are six
projective lines Li,j whose intersections with the ball B are the discs Di,j
drawn in Picture 1.2.

3 Counting Special Points

3.1 Cusp points on Γ̂\B

We remember to the following

Theorem 3.1 (Feustel [Fe1], elegant proof in [Zi]) Let Γ2,1
K be the full Pi-

card modular group of an arbitrary imaginary quadratic number field K.

Then the quotient surface Γ̂2,1
K \B has precisely h(K) cusp points.

We concentrate us to the field of Eisenstein numbers again, omitting
some indices. E.g. write simply Γ for the full Picard modular group
U((2, 1),O), where O = Z[ω] is the ring of integral Eisenstein numbers.
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Lemma 3.2 The factor group Γ/Γ(
√
−3) is isomorphic to the (doubled)

symmetric group ±S4. It is geometrically represented as orthogonal group
O((2, 1),F3), where F = F3 denotes the finite field O/(1 − ω) consisting of
three elements 0,+1,−1, say.

Proof. The action of Γ on O2,1 goes modulo (1−ω) down to an orthogonal
action on F2,1 with ineffective kernel Γ(

√
−3). So we have an embedding

Γ/Γ(
√
−3) �

� // U((2, 1),F) = O((2, 1),F) ∼= ±S4 (11)

It is well-known that the projective group PO((2, 1),F) is isomorphic to the
symmetric group S4, see e.g. [Dieu]. It appears as permutation group of the
F-points

(1 : 0 : 1), (0 : 1 : 1), (−1 : 0 : 1), (0 : −1 : 1), (12)

which are images along the (projectivized) residue map O3 → F3 of the
cusp vectors sitting in the cusp matrix C in (10). In affine coordinates the
corresponding Γ(

√
−3)-cusp points are listed in (7) and drawn in Picture

1.2. The Γ-elements

Σ12 =
(

1 2 2
2 1 2
−2 −2 −3

)
,Σ13 =

(−1 0 0
0 1 0
0 0 1

)
,Σ14 =

(−1 2 −2
2 −1 2
2 −2 3

)
act via residue map on the F-cusp vectors Ci mod 3 as S4-transpositions
(12), (1, 3), (1, 4) (up to sign). These three elements generate S4. Therefore
Γ/Γ(

√
−3)) ∼= ±S4, hence, the inclusion (11) is the identical map. The

Lemma is proved.

�

Corollary 3.3 The Eisenstein congruence surface ̂Γ(
√
−3)\B has precisely

four cusp points. Lifted representants on ∂B are the (red) B- boundary points
drawn in Picture 1.2.

Proof. From Feustel’s Theorem 3.1 we know that the cusp orbit of the
full Picard modular group Γ consists of only one element, take Γκ1. The
preimage of this cusp point on the congruence surface are the (projectivized)
orbits

Γ(
√
−3)

(
1
0
1

)
,Γ(
√
−3)

(
0
1
1

)
,Γ(
√
−3)

(−1
0
1

)
,Γ(
√
−3)

(
0
−1
1

)
,

see (12) as well as Pictures (1.2) and (1.2).

3.2 B-points of maximal negative norm −1

Each K-line L = Ka ∈ K3 can be generated by a primitive vector p ∈ O3,
which is unique up to multiplication with a 6-th unit root.
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Definition 3.4 With these notations, the norm N = n(L) is uniquely de-
fined as n(p) ∈ Z. p is called a norm N vector. If the norm is negative,
then p = Pp = L is a ball point. We endow p and also its image point P
on the Eisenstein congruence surface with the same norm n(P ) = n(p) =
n(p) = N . We speek then also about norm N points p or P .

It is clear that only K-points with integral negative norms exist on the ball
B and on the Picard modular quotient surfaces.

Proposition 3.5 The −1 vectors in O2,1 fill precisely one Γ-orbit, namely

Γ
(

0
0
1

)
. This orbit splits into three Γ(

√
−3)-orbits.

Proof. Otremba proved in [Otr] that, especially for Eisenstein numbers,
there is only one isometry class of positive definit unimodular hermitian
O-lattices of rank 2, see also Hashimoto [Has]. Take the simplest one E
generated by the first two of the canonical O3-basis vectors

e1 =
(

1
0
0

)
, e2 =

(
0
1
0

)
, e3 =

(
0
0
1

)
.

If c denotes an arbitrary norm −1 vector in O2,1, then its orthogonal comple-
ment there, denoted by F , is a rank 2 sublattice of O2,1 with discriminant
+1 by Corollary 2.3. According to Otremba/Hashimoto there are lattice
isomorphisms

E ∼= F, Oe3
∼= Oc, finally : O2,1 = E �Oe3

∼= F �Oc.

So we extended the second isometry to a rank 3 one γ ∈ Γ, hence c ∈ Γe3.
For the second statement we must check the orbit Γe3 modulo Γ(

√
−3).

We deal with the action of the factor group S4 on the residue space F2,1.
The Klein’s four group K4 ⊂ S4 fixes e3. The factor group S3

∼= S4/K4
moves effectively this vector. Geometrically, on the Eisenstien congruence
surface, there are three moved points, visualized in Picture 1.2 by blue
bullets. Pulling them back to the ball we get the explicit splitting

Γe3 = ±Γ(
√
−3)

(
0
0
1

)
t ±Γ(

√
−3)

(
1
1

1−ω

)
t ±Γ(

√
−3)

(
1
−1

1−ω

)
.

Namely, the three −1 vectors inside are not pairwise Γ(
√
−3)-equivalent.

�

3.3 Norms of K-discs and their quotient curves

We denote by E now an indefinite rank-2 sublattice of O2,1. Its orthogonal
complement in O2,1 is an O-line L. We know that n(L) = −dcr(E) > 0 by
Corollary 2.3. The complex plane E = R⊗E defines the K-disc D = PE∩B
in the ball. Similarly, we set L = R⊗ L.

14



Definition 3.6 With the above notations we call n(E) := n(E) =: n(D)
the norm of the K-disc D. Also the image curve Γ(

√
−3)\D (as well any

closure/compactification) on the Eisenstein Congruence Surface will be en-
dowed with the same norm.

Observe, that conversely a given K-disc D determines uniquely the line L
as projective (algebraic) closure of the disc in the projective plane P2 ⊃ B.
Furthermore this line is uniquely lifted to the plane E ⊂ V , see Diagram
3 in Section 1. Moreover, we get with E = E ∩ O2,1 the corresponding
indefinit rank 2 sublattice of O2,1. Its absolute discriminant is the norm of
D (see Cor. 2.3). Moreover, given an arithmetic curve C on the Eisenstein
Congruence Surface, say C = Γ(

√
−3)\D, then the covering K-disc D is

determined up to Γ(
√
−3)-equivalence. But the disc-norm is stable under

Γ(
√
−3)-tranformations. So also curve norm n(C) is well-defined.

Of special interest are the discs and their quotient curves of norm +1.
Parallel to Proposition 3.5 we prove

Proposition 3.7 The +1 vectors in O2,1 fill precisely one Γ-orbit. (For
simplicity you can take Γe1). This orbit splits into six Γ(

√
−3)-orbits, gener-

ated e.g. by the following six norm 1 vectors (arranged in three orthogonally
intersecting pairs):(

1
1
1

)
⊥
( ω
ω2

−1

)
,
(

0
1
0

)
⊥
(

1
0
0

)
,
(

1
−1
1

)
⊥
(−1
ω
ω2

)
(13)

Proof. Obviously, they are not pairwise (1 − ω)-congruent to each other.
Therefore they generate different Γ(

√
−3)-orbits of norm 1 vectors. The

symmetric group S4 acts on their residue classes modulo (1 − ω) with in-
effective kernel K4. The residue vectors coincide with the six F-vectors
di,j ∈ F2,1, 1 ≤ i < j ≤ 4 listed in (9). There are no more 1-vectors in F2,1.
Therefore the six ones in (13) form a complete set of representatives of 1
vectors modulo Γ(

√
−3).

�

Remark 3.8 Each of the three ortho-pairs indicated in (13) generate a posi-
tive definite subplane in O2,1 of minimal discriminant +1. They have or-
thovectors of norm −1, namely:( ω

−ω2

ω−ω2

)
,
(

0
0
1

)
,
(

1
ω

1−ω

)
(14)

Visualisation. The six discs Di,j have been defined at the end of Section
2 by their norm 1 vectors in (13). They are drawn in Picture 1.2. Their
quotient curves on the congruence surface appear in Picture 1.2. The three
−1 points on B, projected from the vectors in (13, are intersections of the disc
pairs with orthogonal vectors listed in (13). Only one of them is visible (real
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coordinates). But along the quotient map B → Γ(
√
−3)\B all three points

will be visible (as blue bullets) on the quotient surface. By Proposition
3.5 these are all −1 points on the congruence surface. Each of them is an
intersection point of two norm 1 curves.

3.4 Stabelizing subgroups

Lemma 3.9 The stabilizer group of e3 in Γ(
√
−3) is the diagonal group{(

ωi 0 0
0 ωj 0
0 0 ωk

)
, 1 ≤ i, j, k ≤ 3

}
The projective stabilizer of the (blue) −1 point O ∈ B, is represented by

<
(
ω 0 0
0 1 0
0 0 1

)
> × <

(
1 0 0
0 ω 0
0 0 1

)
>=

{(
ωi 0 0
0 ωj 0
0 0 1

)
, 1 ≤ i, j ≤ 3

}
(15)

The projective stabilizer of any −1 point on B is isomorphic to the bicyclic
group K9 := Z3 × Z3 of order 9.

Proof. Obviously, the Γ-stabilizer of e3 is
(
U o
to <−ω>

)
with U = U(2,O)

and o the 2-dimensional zero vector. Intersection with the congruence sub-
group yield the diagonal group in Lemma 3.9 and finally the projective
K9-representants in (14).

�

Definition 3.10 For any Picard modular group ∆ we call δ ∈ ∆ a ∆-
elliptic element iff it has finite order and three different eigenvalues. The
notation will also used for the projectivized elements. The point Q ∈ B
is called a ∆-elliptic point iff the stabelizing (isotropy, stationary) group
Stab∆(Q) contains a ∆-elliptic element.

Examples 3.11 . The central point O ∈ B is a Γ(
√
−3)-elliptic point be-

cause its stationary group contains the Gw-elliptic element diag(ω, ω2, 1).
The elliptic property can be easily transported via Proposition 3.5 to all (blue)
−1 points of B.

Remark 3.12 Any elliptic δ ∈ ∆ has precisely one fixed point Q ∈ B.

Proof. It is easy to see that the eigenbasis of δ consists of an orthogonal
basis of V . This is only possible with two positively normed vectors and a
negative one, say q ∈ V−. Then Q = Pq is the point we looked for.

�
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Definition 3.13 With the notations of Definition 3.10 we call δ a ∆-reflec-
tion, iff it has finite order and precisely two different eigenvalues, where the
eigenline of the simple one belongs to V+.

Remark 3.14 Eigenvectors of different eigenvalues are orthogonal to each
other. Therefore the eigenplane E ⊂ C2,1 of the double eigenvalue is indefinit
being orthogonal to a positively normed vector. It follows that E projects and
restricts to a disc D = B ∩ PE on our ball.

Definition 3.15 Such D as above is called a ∆-reflection disc (precisely:
of the reflection δ). The centralizer (group) of D is the ineffectively on D
acting subgroup

Z∆(D) = {γ ∈ ∆; γ|D = id|D} (16)

Example 3.16 The element diag(ω, 1, 1) acts identical on the horizontal
disc D2,4, and diag(1, ω, 1) acts inefficiently on the vertical coordinate disc
D1,3.

Compare the notations at the end of Section 2 and the Visualisation 1.2.

Lemma 3.17 All −1 points Q on B are intersection points of two Γ(
√
−3)-

reflection discs D,D′. The stationary groups are isomorphic to K9 =
Z3×Z3, with centralizer groups ZΓ(

√
−3)(Di) ∼= Z3 of the D and D′ as gene-

rators.

Proof. The situation around O described in Lemma 3.9 is transported
with the help of Γ to each −1 point Q (see Proposition 3.5).

4 All elements of finite order

Let K be an imaginary quadratic number field and γ ∈ Gl3(K) an element
of finite order n. The characteristic polynomial of γ over K has degree 3.
All zeros of it are n-th unit roots ζn ∈ C. Over Q the roots have degree not
greater than 6. Denote by χ(x) ∈ Q[x] a polynomial with zero ζn of degree
≤ 6. We want to know, which unit roots can occur for γ ∈ Γ(

√
−3). We

concentrate us first to prime numbers n = p and to the field K of Eisenstein
numbers. The minimal polynomial over Q with zero ζp has degree p − 1.
It divides χ(x), therefore p − 1 ≤ 6. The only possbilities are p = 2, 3, 5, 7.
The latter two primes can be excluded, because ζ5, ζ7 are not zeros of a
polynomial of degree ≤ 3 over K.

If n = pk is a prime power, then the degree of the prime polynomial of
ζpk over Q is equal to (p − 1)pk−1. Over Q(

√
−3) survive only the honest

powers 22, 32. In congruence subgroups we can further restrict the possible
orders of finite elements. In [Apo], Lemma 7.1, we proved the elementary

17



Lemma 4.1 Let a be an ideal in O, γ ∈ Γ(a) of finite order n with n-th
unit root ζ as eigenvalue. Then a divides the principal ideal (1− ζ) in OL,
where L = K(ζ).

For the Eisentein congruence subgroup Γ(
√
−3) we get for a = (1 − ω)

the relation (1−ω) | (1− ζ) ∈ OK(ζ). The only possible prime order for ζ is
p = 3. The prime powers 22, 32 are excluded, but also p = 2. We notice the
following

Corollary 4.2 The only elements of finite order in Γ(
√
−3) have order 3.

Each of them is conjugated to one of the diagonal elements diag(ωi, ωj , ωk).

We want to determine all reflections in Γ(
√
−3). Such a reflection σ

must be of order 3 by Corollary 4.2 with a double and a single eigenvalue.
Without loss of generality, we assume that 1 is the double eigenvalue and
ω the other one (if not, take the inverse or/and multiply σ with ω or ω2).
The eigenplane is denoted by E. Its orthogonal complementary line in V
is denoted by G. The integral part G = O3 ∩ G is spanned by a primitive
(eigen) vector g with positive norm and sits on the line G orthogonal to E.
We assert that its norm n(g) = n(G) is equal to 1:

5 Elliptic elements

We want to prove that the Eisenstein quotient surface Γ(
√
−3)\B is smooth

and that the Γ(
√
−3)-reflection discs fill completely the ramification locus of

the (locally finite) quotient morphism B→ Γ(
√
−3)\B. For this purpose we

must find all elliptic elements, points, of our Picard Eisenstein congruence
lattice Γ(

√
−3) or on the surface Γ(

√
−3)\B, respectively.

Characterisation 5.1 of elliptic elements. Let ∆ be a Picard modular
group of the 2-ball. An element δ ∈ ∆ is elliptic iff it has an isolated fixed
point P on B. This means that in a small open neighbourhood of P there
is no other fixed point of δ. A point P ∈ B is a ∆-elliptic point iff the
stationary group Stab∆(P ) = {γ ∈ ∆; γ(P ) = P} contains an elliptic group
element. (cp. Shimura [Sh], Ch.I)

Remarks 5.2 For each ball point P the stationary group Stab∆(P ) is finite
because ∆ acts proper discontineously on B. An elliptic element δ ∈ ∆ has
finite order, say n. Being not a reflection it has three different eigenvalues.
Each of them is an n-th unit root. Any triple of eigenvectors of the different
eigenvalues is an orthobasis of C2,1. Precisely one of these basis vectors,
let’s denote it by c, has negative norm. Its projection P on B is the only ball
fixed point of δ.
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Proposition 5.3 The set of Γ(
√
−3)-elliptic ball points coincides with the

set of −1 points on the Eisenstein Congruence surface. It’s the same to say:
with the set of intersection points of two Γ(

√
−3)-reflection discs on B.

Proof. The inclusion ⊆ has already been proved with Lemma 3.17: namely
the −1 point O contains the elliptic element δ = diag(ω, ω2, 1). For any −1
point P one finds a γ ∈ Γ(

√
−3) transporting O to P . Then γδγ−1 stabilizes

P , has the same eigenvalues as δ, is therefore elliptic. The inverse inclusion
has been proved in my book [EPD], Ch.I, 1.4.5, over two pages, elementary
but a littlebit tricky.

6 Smoothness of the Eisenstein
Congruence Surface (ECS)

6.1 Smoothness of the open surface Γ(
√
−3)\B

Corollary 6.1 The projective stabiliser group StabΓ(
√
−3)(p) of each

Γ(
√
−3)-elliptic point p ∈ B is isomorphic to Z3×Z3. It is generated by two

Γ(
√
−3)-reflections. Therefore the image point P on Γ(

√
−3)\B is smooth.

Hence the whole (open) quotient surface is smooth.

Proof. We saw, that p must be a ballpoint of norm −1 and that it is the
intersection of precisely two reflection disc (Proposition 5.3). Because of the
Γ-equivalence of all −1-points we can assume that p = O. We visualized the

local situation around O in Picture (1.2). The reflections
(
ω 0 0
0 1 0
0 0 1

)
,
(

1 0 0
0 ω 0
0 0 1

)
generate obviously K9 = Z2

3
∼= StabΓ(

√
−3)(O). The image point of O, and

also of p on the Congruence Surface is locally isomorphic to its image of
O on C2/StabΓ(

√
−3)(O). The latter image point is a smooth one by the

following old result:

Proposition 6.2 (Chevalley [Ch]). Let G be a finite subgroup of Gln(C),
p : Cn → Cn/G the quotient map. Then p(O) is a regular point if and only
if G is generated by reflections.

�

We remember to the definitions for arbitrary B-lattices ∆ and ∆-discs
D to its normalizer and centralizer group (see the text before Diagram (4)
in Section 1):

N∆(D) = {α ∈ ∆; α(D) = D}, Z∆(D) = {α ∈ ∆; α|D = id|D}. (17)

The effectively on D acting group is: ∆D = N∆(D)/Z∆(D).
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Proposition 6.3 The image curve of any Γ(
√
−3)-reflection disc D on the

(open) Congruence Surface Γ(
√
−3)\B is smooth.

Proof. Let σ ∈ Γ′ := Γ(
√
−3) be a reflection and denote the correspon-ding

reflection disc by D = Dσ. Knowing that the quotient curve Γ′D\D is smooth
we see that also Γ′\D ⊂ Γ′\B has no singularities iff the Γ′-equivalence for
points on D is not stronger than the NΓ′(D)-equivalence. But this generally
known for reflection discs (see [BSA], Lemma 4.5.2).

6.2 Smoothness at the cusps

We want not explain here the necessary notions and calculations for under-
standing things around cusps. We will shortly mention the things we used.
The interested reader should consult my book [EPD] (for the ECS).

• Neat subgroup, toroidal compactifications, cusp bundle over elliptic
curves, disc bundles over elliptic curves, their plugging in, smooth
crossing fibres, cyclic quotients of elliptic cusp bundles, curve com-
pactifications ∆\B around cusps.

• explicit calculations [EPD], yield the second graph type in [Ho83],
Prop. 4.2):

◦3

♦−1

CCCCCCCC

{{{{{{{{
◦3

◦3

(18)

This is a ”dual graph” of four (irreducible) curves. The circles stand for
reflection curves with (positive) indices announcing the branch order.
The central diamond represents a compactifyng curve with (negative)
index, which means the selfintersection. The lines are interpreted as
intersection points of the curves joint by them. So the cusp curve
has three intersecting reflection curves. We know moreover that our
ECS-cusp curves are rational.

Proposition 6.4 All (four) cusp points of the ECS are non-singular. They
are also regular points of each of (the six) reflection curves.

Altogether with Propositionss 6.1 and 6.3 we get

Theorem 6.5 The BB-compactified Eisenstein Congruence Surface
̂Γ(
√
−3)\B is smooth. All (six) (compact) reflection curves ̂Γ(

√
−3)\D on it

are smooth.
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6.3 Curve classification

Let D be a Γ(
√
−3)-reflection disc on B and C its (open) quotient curve

Γ(
√
−3)\D ⊂ Γ(

√
−3)\B. The closure of the BB- compactified or curve

compactified surface is denoted by Ĉ or C, respectively.

Exercise. Determine the Euler-Poincaré volume of a fundamental domain
F of the one-dimensional Eisenstein D-lattice PU((1, 1),O) = ΓD and F ′ of
Γ′D = Γ(

√
−3)D.

Answer (Feustel [Fe0]):∫
F ′
γ1 = −2/3 with Euler form γ1 on D (19)

Hint. Use a transfer of U((1, 1),O to a Sl2(Z)-commensurable group acting
on the upper half plane H along a suitable biholomorphic fractional map

D ∼ // H . Relate it with the volume of a Sl2-fundamental domain on H,
which is equal to −1

6 . For more details see [EPD], I.1.5.

Next we want to calculate Euler number e(C) and signature σ(C) of

the Γ(
√
−3)\B - embedded compact reflection curve C. A good geometric

orientation is concentrated in the following

C-Graph ([BSA], Figure in Example 4.7.6):

�

•3

AAAAAAAA

}}}}}}}
◦3

�

(20)

It’s a ”dual graph” again. The small circle and the diamonds stand for curves
crossing C represented by the central bullet. More precisely, the diamonds
stand for cusp curves, the circle: for the reflection curve crossing the given
one. The attached numbers 3 indicate the branch order (ramification index).

We encaged Euler number and selfintersection defining (1-dimensional)
orbital hights: he the Euler-height and hτ the signatur-height. We only re-
duce the definition here to the cases, when at most two components of the
irreducible branch curves are intersecting in any point of the curve com-
pactified model of a Picard modular surface. I refer to the more general
Definition 4.7.3 in my book [BSA]. Surface singularity data ei, dj can be
simplified (see below) because our surface (ECS) is smooth. In [BSA] we
wrote ”ef”, ”τf” instead of he,

hτ
3 .
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Definition 6.6 The one-dimensional orbital Euler hight and orbital sig-
natur hight are defined as

he(C) = e(C)−
∑
i

(1− 1

vidi
)−#C∞

hτ (C) =
1

v

(C
2
) +

∑
i

ei
di

+
∑
j

ej
dj

 , (21)

where e(C), (C
2
) are the Euler number respectively the selfintersection index

of the reflection curve C. Singularity data are trivial: ei = 0, dj = 1. The
branch order of C is denoted by v, while vi is the branch order of the i-th
curve crossing C.

The number of rational compactification curves crossing C is denoted
by #C∞. he is the algebraic expression for the Euler volume

∫
F ′ γ1, and

hτ = 1
2 · he. The relations can be found in [BSA], (4.7.7). The latter one is

known as proportionality (Prop.1).
Now we can calculate with the help of (19), (??) and (21)

−2

3
= he(C) = e(C)− (1− 1

3 · 1
)− 2,

−1

3
= hτ (C) =

1

3
·
[
(C

2
) + 0 + 0

]
.

It follows that:

Lemma 6.7 Any of the six reflection curves C on the ECS have Euler num-
ber 2. So these are smooth rational curves. Moreover their selfintersection
is equal to −1.

7 Surface classification

For brevity, e.g. at indices, we use following notations:

Γ = U((2, 1),O), Γ′ = Γ(
√
−3), X = Γ\B, X ′ = Γ′\B

We defined in [BSA] two-dimensional orbital hights He, Hτ for any Picard
modular surface. Let’s pick out the easy variant of smooth curve compacti-
fied Picard modular surfaces and (smooth) branch curve on it without triple
points. The irreducible compactification curves are assumed to be rational.

Definition 7.1 The orbital Euler hight respectively signature hight look
like this:

He(X
′) = E(X ′)− 2(1− v−1) ·D · tv−1 − 1

2
(1− v−1) · S · t(1− v−1)− t

Hτ (X ′) = Σ(X ′)− 1

3
(v − v−1) ·D · tv−1 − 1

3
(T 2)

(22)
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Thereby T denotes the compactification divisor. Its number of components
is denoted by t. D is the (diagonal) selfintersection matrix of branch curve
components. S denotes the proper intersection matrix of the same curves,
that means withselfintersections substituted by 0.

In the case of the Eisenstein Congruence Surface we have t = 4 by
Corollary 3.3, and

D = diag(−1,−1,−1,−1,−1,−1)

by Lemma 6.7. With suitable numeration one gets for the six reflection
curves on X ′:

S =

 0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


because each component has only one intersecting partner, cp. Diagram 20
with Proposition 3.7 in the background.

The right hand sides in (22) can now be calculated:

E(X ′)−
6∑
i=1

(
(1− 1

3
) · (−1) · 1/3

)
− 2 · 4,−1

2

6∑
i=1

(
(1− 1

3
) · 1 · (1− 1

3
)

)

Σ(X ′)− 1

3

6∑
i=1

(
8

3
· (−1) · 1

3

)
− 1

3
· 4 · (−1)

(23)
The left hand sides of (22) are volumes of fundamental domains again:∫

F(Γ′)
γ2 with Euler form γ2 on B∫

F(Γ′)
τ2 with signature form τ2 on B

For details we refer to [BSA] or [BHH]. There you find also the important
Proportionality Theorem (Prop 2): [BSA],(4.9.1). Originally it comes from
Hirzebruch’s comparison of Chern forms of invariant metrics on symmet-
ric domains, well-understandable summarized in [BHH]. Here we need the
Proportionality Relation

γ2 = 3τ2 consequently He(X
′) = 3Hτ (X ′).

Remarks 7.2 The conlusion needs higher dimensional modern Riemann-
Roch Theory in the sense of Grothendieck-Hirzebruch, see [BSA] with back-
ground in Hirzebruch’s book [Hi].

I determined the Euler volumes of full Picard modular groups at the
second half of the 1970-s. They appear as L-series values, multiplied with
an elementary number. A proof has been reproduced in my book [BSA],
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Ch.V, 5A. Later, by means of fuctional equation they could be expressed in
terms of (higher) Bernoulli numbers, see last formula in [Ho98]. Especially,
we found

He(X
′) =

∫
F(Γ′)

γ2 = 1/3 , Hτ (X ′) =

∫
F(Γ′)

τ2 = 1/9,

see e.g. [BSA], proof of Lemma 5.2.2. We plug it into the left hand side of
(22), calculate (23) to get

1

3
= E(X ′)− 20

3
,

1

9
= Σ(X ′) +

28

9
.

It follows that E(X ′) = 7 and Σ(X ′) = −3.
Each of the four cusp lines on X ′ have selfintersection −1. So, the

birational morphism X ′ → X̂ ′ is the simultaneous blowing down of four
exceptional curves to four (regular) cusp points. It induces classically the
following change of Chern numbers:

E(X̂ ′) = E(X ′)− 4 = 3 , Σ(X̂ ′) = Σ(X ′) + 4 = 1.

Proposition 7.3 The BB-compactification X̂ ′ = ̂Γ(
√
−3)\B has the follo-

wing Chern invariants:

Euler number E(X̂ ′) = 3, Signatur Σ(X̂ ′) = 1.

One derives from them two other Chern invariants, arithmetic genus and
Selfintersection of the canonical class:

χ =
1

4
(E + Σ) = 1 , (K2) = 12χ− E = 9.

Now we must remember to the following highlight theorem of the 1980-s:

Theorem 7.4 (Miyaoka -Yau). A smooth compact complex surface of gene-
ral type is a ball quotient ∆\B (for a suitable cocompact ball lattice ∆) if and
only if their Chern numbers (K2) and E (Euler number) satisfy the relation

(K2) = 3E. (24)

In this case there is no rational curve on the surface.

A simple resumée of Miyaoka’s and Yau’s approach to the above theorem
can be found in [BHH], Anhang B.2, F).

From classification theory of complex surfaces of Kodaira dimension < 2
one deduces (after careful check of the texts in [BPV] or [Shaf] around Chern
invariants):

Proposition 7.5 The only smooth compact complex algebraic surface, not
of general type, satisfying condition (24) is the projective plane P2.
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Corollary 7.6 If there is a rational curve on the smooth compact complex
surface satisfying Chern number relation (24), then it cannot be of general
Type. It has to be isomorphic to the projective plane P2.

Main Theorem 7.7 The Eisenstein Congruence Surface ̂Γ(
√
−3)\B is the

projective plane P2. The four cusp points Ki, i = 1..4, are not collinear. The
compactified branch locus of the quotient morphism Γ(

√
−3)\B→ Γ\B is the

complete quadrilateral on P2, visualized in Picture (1.2): Each component a
line through two of the cusp points.

Proof. We know by Proposition 7.3, that for our ECS the Chern relation
(24) is satisfied. By Corollary 7.6 and Theorem 7.4 it cannot be a surface
of general type. But then it follows from Proposition 7.5 that the BB-
compactified Eisenstein Congruence Surface is the projective plane P2.

The six reflection discs visualized in Picture (1.2) cover our the branch
curves along the ball quotient morphism. On any of the above discs D ly,
up Γ(

√
−3)-equivalence, precisely two cusps. Hence the compactified image

curve C goes through precisely two cusp curves of X ′. We see in Lemma 6.7

that the selfintersection index (C
2
) is equal to −1. Each blowing down curve

crossing C increases the selfintersection by 1, therefore (Ĉ2) = (C
2
)+2 = 1.

But Ĉ is a smooth rational curve on P2. There are only two possibilities: It is
a quadric or an embedded line on the plane. The first case can be excluded
because selfintersection of a quadric is equal to 4. The Main Theorem is
proved.

�

Chapter II.
Heegner Reihen Picardscher Modulflächen

8 Orbitale Invarianten

8.1 Orbital Surface Hights

F denotes the category of open Picard modular surfaces, but with only
finite morphisms. More precisely, we pick out only the finite morphisms
of F supported by inclusions Γ′ ⊆ Γ, that means the quotient morphisms
Γ′\B � Γ\B. For any imaginary quadratic number field K we let FK
be the complete subcategory of all Picard modular surfaces over fixed K.
Conversely, we can consider F as disjoint union of all FK .

We can also built the categories F̂ ,F of BB-compactified or curve-
compactified objects and morphisms from F . If we correspond to each
object/morphism its compactification we get natural isomorphisms
F ∼−→ F ∼−→ F̂ .
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Definition 8.1 An orbital invariant on F in a Q-Algebra R is a degree
compatible map H : F −→ R, t.m. it holds that

H(Y ) = [Y : X] ·H(X) = deg(F ) ·H(X)

for all (finite) morphisms F : Γ′\B = Y � X = Γ\B of F .

In other words the condition describes a contravariant numerical functor
deg : F → R, t.m. with commutative diagrams

Y � //

F
����

H(Y ) H(PΓ′)

X � // H(X)

• degF=

OO

H(PΓ),

[PΓ:PΓ′]

OO
(25)

where • is nothing but the multiplication map (with degF - factor). Some-
times it is convenient to express the factor in terms of index of the starting
groups: If Z(Γ) denotes the (finite cyclic) center of Γ and w its order, then
we have the obvious relation

[PΓ : PΓ′] = [Γ/Z(Γ) : Γ′/Z(Γ′)] = [Γ : Γ′]·[Z(Γ′) : Z(Γ)] = [Γ : Γ′]·w
′

w
(26)

Important is the the multiplicativity sitting in the categorial definition:

deg(F ◦ F ′) = deg(F ) · deg(F ′)

for all F ′ : Z → Y in F .
It is easy to transfer the notion to the (naturally isomorphic) compac-

tified categories F̂ and F . This should be done in mind by the reader.
We denote e.g. simultaneously orbital hights by H on each of our open or
compactified categories. Distinctions H, Ĥ,H are not necessary. We also
use sometimes H(Γ) = H(PΓ) = H(Γ\B) as in the above diagram.

The background are Haar mesures. Denote by G the Lie group defining
the ball B and acting on it, say G = SU((2, 1),C). Take a G-invariant metric
µ on B (known as Bergmann metric in Differential Geometry) and let dµ
be the corresponding volume form on B. The volumes µ(Γ) :=

∫
F(Γ) dµ of

fundamental domains of ball lattices Γ are finite (by definition of lattice),
especially for Picard modular groups. Each such volume form defines an
orbital invariant on F̂ in R. We can choose Chern forms, especially the
Euler or signature form, see Section 7. Definition 7.1.

Example 8.2 The orbital Euler hight He(X
′) =

∫
F(Γ′) γ2 and also the or-

bital Signatur hight Hτ (X ′) =
∫
F(Γ′) τ2

have been essentially used for questions around surface classifications. They
can be expressed in terms of Riemann-Roch and singularity theory. As
important example we presented the hights of the Eisenstein Congruence
Surface in this manner, see Remarks 7.2.
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8.2 Picard modular curves

Let Γ be again a Picard modular surface, say over K. Consider a K-disc
D ⊂ B. The quotient curve DΓ := Γ\D ⊂ Γ\B is called a Picard Modular
curve (PMC). All of them form the category D of Picard modular curves.
The morphisms are the finite coverings Γ′\D � Γ\D induced by a surface
covering Γ′\B � Γ\B. We illustrate the situation in the following diagram:

DΓ′

f
����

Γ′\D �
� //

F |DΓ′����

Γ′\B

F
����

DΓ Γ\D �
� // Γ\B

(27)

The compactified extensions D̂Γ′ → D̂Γ or DΓ′ → DΓ restricting F̂ or
F , respectively, form the categories D̂ or D.

Definition 8.3 p ∈ D is called a Γ-cross point (of D) iff there exists an
element γ ∈ Γ \NΓ(D) such that and p ∈ D ∩ γD.

In other words: γ moves D but not p. Or: The image point P of p along
D → DΓ = Γ\D is a curve singularit of DΓ. Or: The Γ-equivalence for
points on D is stronger than the NΓ(D)-equivalence.

Definition 8.4 A sublattice Γ′ (of finite index) of Γ is called D-neat if it is
neat and has no Γ′-cross point.

In other words: for any γ′ ∈ Γ′ it holds that γ′D = D or D ∩ γ′D = ∅. For
a discussion we refer the reader to the original Definition 4.4.7 in my book
[BSA] and the text around. There one finds the following

Facts 8.5 .

• For any K-disc D ⊂ B and Picard modular group Γ (over K) there
exists a D-neat sublattice Γ′ of Γ.

• Any Picard curve DΓ = Γ\D (as above) has only finitely many curve
singularities.

We set shortly v = |ZΓ(D)|. It’s nothing else but the branch order of the
covering (reflection order, ramification index) of the covering F in Diagram
(27) at the quotient curve DΓ. The degree of the curve covering DΓ′/DΓ

can be expressed as

[DΓ′ : DΓ] = [ΓD : Γ′D] =
[NΓ(D) : NΓ′(D)]

[ZΓ(D) : ZΓ′(D)]
=

[NΓ(D) : NΓ′(D)]

v : v′

with obvious notation v′ = |ZΓ′(D)|.
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9 Orbital Curve Categories

For Riemann-Roch calculations around curves DΓ we need the embedding
of the compact curve DΓ in an open neighbourhood U ⊆ Γ\B. Namely,
for orbital invariants we need data of surface and curve singularities living
on DΓ, moreover the branch order of the curve with respect to D and Γ.
Instead of smaller neighbourhoods - as used in earlier papers, e.g. in [Ho02]
- it suffices to take only the big one U = Γ\B. So we thicken our open curves
to DΓ, which is nothing else but the curve together with its embedding:

DΓ : DΓ
� � // Γ\B

Definition 9.1 The thickened curve DΓ is called an orbital Picard modular
curve (on Γ\B).

An orbital covering is an embedding pair f = (f, F ) as in Diagram (27).
More simply, it is an embedding diagram

DΓ′

ff
����

� � // Γ′\B

F
����

DΓ
� � // Γ\B

(28)

On this way we built the category D of open orbital Picard curves to-
gether with orbital coverings as defined above as (only) morphisms. Via
compactifications we get in obvious manner the orbital categories D̂ and
D. If we fix the imaginary quadratic field K, then then we get complete
subcategories DK , D̂K ,DK of orbital Picard modular curves over K.

The diagram
DΓ′′

gg
����

� � // Γ′′\B

G
����

DΓ′

ff
����

� � // Γ′\B

F
����

DΓ
� � // Γ\B

(29)

describes the multiplicativity of orbital morphisms in full details:

f ◦ g = (f, F ) ◦ (g,G) = (f ◦ g, F ◦G) = fg.

9.1 Orbital invariants for orbital curves

Definition 9.2 A (rational) orbital invariant

h : D −→ Q
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is a multiplicative numerical functor on D satisfying

h(D) = [D : C] · h(C) where [D : C] =
[D : C]

w : v
=

[ΓD : Γ′D]

w : v

for orbital curve coverings D � C in D with branch orders v = vC and
w = vD. The numbers v, w are also called (orbital) weights.

The single value h(C) is called the orbital hight (w.r.t. h) of the orbital
curve C = DΓ.

Example 9.3 Take a curve-degree compatible numerical hight functor
h : D → Q. This means that for all covering f : DΓ′ � DΓ in D it holds
that

h(DΓ′) = [DΓ′ : DΓ] · h(DΓ).

We orbitalize it to the obital invariant h : D→ Q setting

h(D) =
1

w
h(D).

It is easy to check that (with notations of Definition 9.2)

h(D) =
1

w
h(D) =

[D : C] · h(C)

w
=

[D : C] · v · h(C)

w
= [D : C] · h(C).

So we orbitalize the Euler and signature hights in Definition 6.6 to orbital
Euler respective signature invariant on D. The second formula there shows
that the branch orders are very necessary. This is the reason for the change
from simple hights to (fat) orbital invariants. The branch orders will be
most important in the next section preparing Heegner series.

10 Orbital Intersection Products

It becomes convenient to work in the category D̂ of BB-compactified orbital
Picard curves. We restrict ourselves to a fixed imaginary quadratic number
field K. So we work only with Picard modular groups Γ commensurable
with the full one U((2, 1),OK) and the compactified quotient surfaces X̂Γ =

Γ̂\B. Each K-disc D defines an (embedded) Orbital Picard Modular Curve

D̂Γ : D̂Γ ↪→ X̂Γ in D̂K , cp. Definition 9.1.
We orbitalize first the well-known divisor groups

Div S =
⊕
C⊂S

Q · C

on compact agebraic surfaces S (where C runs through all irreducible com-
pact algebraic curves on S). There is a nice intersection product on complex
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compact normal algebraic surfaces for the generating curves C. The defini-
tion goes back to Mumford, (later Fulton). It can be Q-linearly extended to
a Q-bilinear form

( · ) : Div S ×Div S −→ Q.

For orbitalization we fix Γ and define on X̂ = X̂Γ as above the formal
Q-vector space

Div X̂ =
⊕

D̂Γ⊂X̂Γ

Q · D̂Γ

generated by the OPM curves D̂Γ on X̂Γ, see Definition 9.1 again.
For two OPM curves Ĉ, D̂ of orbital weight w respectively v on X̂ we

define the orbital intersection

(Ĉ · D̂) =
(Ĉ · D̂)

v · w

It can be Q-bilinearly extended to the orbital intersection on the OPM
divisor group:

Div X̂ ×Div X̂ −→ Q

For any neat Picard modular congruence subgroup Γ0 = Γ(a) ⊆ Γ the
curve intersections of curves on the (smooth) compactified model Γ0\B have
been also well-understood by Cogdell [Cog]. Locally, everything is clear.
We use finite coverings to push down intersection products from neat sur-
face models to arbitrary OPM surfaces. It’s a longer procedure through
Riemann-Roch, curve and surface singularities to realize this way in termes
of geometric local and global Galois-Theory. For details we refer to [Ho02]
and [Ho07].

Important was the construction of direct and inverse images along finite
coverings F : Ŷ → X̂ of PM surfaces

F# : Div Ŷ −→ Div X̂ , F# : Div X̂ −→ Div Ŷ

We proved the Orbital Projection Formula

(F#B ·A) = (B · F#A),

where A ∈ Div X̂, B ∈ Div Ŷ are cycles on the PM surfaces X̂ or Ŷ ,
respectively.

This is the escalator we need for shifting intersection products from neat
PM surfaces to non-neats and vice versa along finite coverings: From well-
understood to less-understood intersection products.
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11 Orbital Heegner Functionals

We consider (rational) functionals

fX̂ : Div X̂ −→ Q

on orbital divisor groups on a PM surface X̂.

Definition 11.1 We call a set f̌ = {fX̂ ; X̂ ∈ D̂K} an orbital functional

on D̂K iff it is compatible with orbital direct images along finite coverings
F : Ŷ → X̂. This means that fX̂ ◦ F# = fŶ holds for all finite orbital

coverings F in D̂K .

We repeat the definition of the orbital Heegner functional presented first
in [Ho02], 3.4. First remember to norms n(D) ∈ N+ of K-discs D. You find
it in Subsection 3.3, Definition 3.6, only for K = Q(

√
−3). But it works

also in all cases, when OK is an principal domain: D is the ortho-disc of a
primitive O-vector a and n(D) = n(a). We set also for the image curve DΓ

on X = XΓ = Γ\B (also for smooth and other compactifieed models)

n(D̂Γ) = n(DΓ) = n(Γ\D) = n(D).

Definition 11.2 For N ∈ N+ we call the reduced Weil-divisor

HN = HN (X̂Γ) =
∑

n(D̂Γ)=N

D̂Γ (30)

the Heegner divisor of norm N on X̂Γ, (set 0, if the sum is void). Taking
the orbitalized curves in the sum, we get the orbital Heegner divisors HN =
HN(X̂Γ).

Moreover we introduce on X̂Γ the orbital Heegner functionals

hN : Div X̂ −→ Q, Ĉ 7→< Ĉ,HN >

We construct from them the formal series (with independent variable q)

H(q) =
∞∑
N=1

hN · qN

We apply now simultaneously the functionals to an irreducible orbital curve
Ĉ on X̂ to get the formal power series

H
Ĉ

(q) =
∞∑
N=1

hN(Ĉ) · qN ∈ Q[[q]] (31)
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It is called the formal orbital Heegner series for Ĉ. In [Ho02] between
Definitions 3.5 and 3.6 we included also h0, but it doesn’t play any role in
the actual article. It is componentwise clear that

H
D̂

(q) = [D̂ : Ĉ] ·H
Ĉ

(q) (32)

for any orbital curve covering D̂ of Ĉ, see also [Ho02], (11).
We fill our formal series with more life substituting q by e2πiτ , τ ∈ H,

the upper half plane.

Definition 11.3 The series

Heeg
Ĉ

(τ) = h0 +

∞∑
N=1

hN(Ĉ) · q2πiNτ

(with h0 uniquely defined, see Remark 11.6, below) is called the orbital Heeg-
ner series of the orbital Picard curve Ĉ.

11.1 Modular forms of Nebentypus

Remember the classical congruence subgroups (m ∈ N+)

Γ0(m) =
{(

a b
c d

)
∈ Sl2(Z); c ≡ 0 mod m

}
of the modular group Sl2(Z) acting on the upper half place H. Let, moreover,

χ = χK : Z→ {0,±1}, h 7→
(−DK/Q

h

)
(Legendre symbol)

be the Dirichlet character of the imaginary quadratic number field K. It
factorizes through the residue ring modulo the discriminant DK/Q.

Definition 11.4 A holomorphic fuction f(τ) on H is called modular form
of weight k ∈ N, level N ∈ N and Nebentypus χ, iff it satisfies the following
functional equations:

f

(
aτ + b

cτ + d

)
= (cτ + d)kχ(d)kf(τ) ∀

(
a b
c d

)
∈ Γ0(N), (33)

(and f has meromorphic extensions to the cusps). If it is 0 at the cusps, we
call it a cusp form. The space of modular forms of weight k, level N and
Dirichlet character χ will be denoted by Mk(N,χ). It is a finite-dimensional
C-vector space.

In my paper [Ho07], 7.4 you find the following

Theorem 11.5 With suitable h0 = h0(Ĉ) the Heegner series Heeg
Ĉ

(τ) of

a Picard curve Ĉ of the field K is a modular form belonging to Mk(m,χK).
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Remark 11.6 Since a non-zero constant cannot satisfy (31), it does nott
belong to Mk(m,χK). Therefore the constant h0 is uniquely determined by
the modular property of the series. It can be expressed in terms of the orbital
Euler number of Ĉ (Cogdell, [Cog]).

Remark 11.7 The above theorem was first proved by Cogdell in [Cog] for
neat congruence subgroups. The extension of the result to all Picard modular
groups one can find in my papers [Ho02] and [Ho07].

12 Hecke’s explicit Construction
of Modular Forms of Nebentypus

Hecke’s notation of the space of modular forms of Γ of weight k, where Γ is
a subgroup of finite index of ⊆ Sl2(Z), is:

Mk(Γ) =

{
f ∈ Hol(H); f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ∀

(
a b
c d

)
∈ Γ

}
. (34)

Keep in mind the meromorphic condition at cusps, after Definition 11.4 for
all modular forms considered in this paper.
Well-defined in many textbooks about modular forms is the congruence
subgroup

Γ1(N) =
{(

a b
c d

)
≡
(

1 b
0 1

)
mod N

}
⊆ Sl2(Z)

Obviously, we have the exact sequence of groups:

1 −→ Γ1(N) −→ Γ0(N) −→ (Z/NZ)∗ −→ 1(
a b
c d

)
7→ d

For any γ =
(
a b
c d

)
∈ Sl2(Z) Hecke uses the operation (from right) f |γk : =

(cτ+d)−kf(γ(τ)), see also [Sh], § 2.1. Then the Definition in (34) is exteded
to modular forms of Nebentypus χ.

Mk(N,χ) =
{
f ∈Mk(Γ1(N)); f |γk = χ(d) · f, ∀γ ∈

(
a b
c d

)
∈ Sl2(Z)

}
(35)

It’s easy to verify that the functional conditions in (33) and (34) are the
same. Helpful are the following facts:

• For odd primes N = p and k ≡ p−1
2 is χ =

(
•
p

)
the qudratic residue

modulo p ([He59], p. 810). Especially M3(3, χ) = M3(3,
(•

3

)
).

•
(•

3

)
=
(

3
•
)

=
(−3
•
)

(for MAPLE-application ”jacobi(−3, n)”)

• In M3(3) there exists no (non-zero) cusp form of Nebentypus
(

3
•
)
, see

[He59], Prop.10, p.817.
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• There are precisely two linearly independent Eisenstein series in M3(3)
of Nebentypus

(
3
•
)
, see [He59], Prop.12, p.818 (with q = e2πiτ accor-

ding to (20), p.811)

E1(τ) =
∞∑
n=1

c1(n)qn , c1(n) =
∑

0<d|n

d2χ(n/d)

E2(τ) = A+
∞∑
n=1

c2(n)qn , c2(n) =
∑

0<d|n

d2χ(d)

(We don’t need Hecke’s explicit determination ofA = − 35/2

(2π)3 ·2·
∞∑
n=1

χ(n)n−3).

E1 = q + 3q2 + 9q3 +O(q4)

E2 = A+ q − 3q2 + q3 +O(q4)

13 Heegner series for Picard-curves
of Eisenstein type

Let Γ be a Picard modular group of the field K = Q(
√
−3) of Eisenstein

numbers and X̂Γ the BB-compactified quotient surface Γ\B. For simplicity
we assume that Γ is a sublattice of Γ(

√
−3). Take moreover one of the

discs D of norm 1, e.g. the orthogonal disc of d2,4 =
(

1
0
0

)
in Definition 2.4

visualized in Picture (1.2) joining the cusps −1 and +1. The embedded
quotient curve of D on X̂Γ is denoted by D̂, that on P2 = XΓ(

√
−3) by T̂.

According to Definition 11.3 we have to calculate the first coefficients
hN(T̂) =< T̂,HN > of the Heegner series. Since T̂ is a line on the projective
plane P2 its intersection with any plane curve B is coincides with the degree
degB. Moreover we know the weight v(T̂) = 3 (branch index). So

< T̂, Ĉ >=
1

3
· deg(Ĉ). (36)

We know all curves of norm 1, namely: Ĉj , j = 1...6 . These are the lines of
the quadrilateral visualized in Picture (2.2). They are also the components
of branch locus of the covering B̂ → X̂Γ(

√
−3). For any irreducible plane

curve Ĉ one gets

< T̂, Ĉ > =
1

3
· deg(Ĉ)

v
Ĉ

=

{
1
9 , if Ĉ = Ĉj , j = 1..6
1
3 · deg(Ĉ), else

So

< T̂,H1 > = < T̂,C1 >+ ...+< T̂,C6 > =
2

3

< T̂,H2 > =
1

3
· deg(H2)

(37)
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because H2 has no component of the branch locus. To get the Heegner
series as explicit linear combination of Hecke’s Eisenstein series Heeg

T̂
(τ)

as linear combination of Hecke’s Eisenstein series E1, E2 (see end of Section
12) we must know:

• A) dimM3(3, χ) = 2;

• B) H2 is the sum of three lines (of weight 1).

From B) and (37) it follows that

< T̂,H2 > =
1

3
+

1

3
+

1

3
= 1.

Now we have to solve

x · E1 + y · E2 = ...+ (x+ y)q + (3x− 3y)q2+ = ...+
2

3
q +

3

3
q2 + ...

With the unique solution x = 3
2 , y = 1

2 we receive

3 ·Heeg
T̂

(τ) =: Heeg
T̂

(τ) =

=
3

2
· E1 +

1

2
· E2 = ..+ 2q + 3q2 + 14q3 + ...+ < T̂ ,HN > qN + ...

= ...+ < T̂ ,H1 > q+ < T̂ ,H2 > q2+ < T̂ ,H3 > q3 + ...

With the explicit knowledge of Hecke’s two basic Eisenstein series E1, E2

(end of Section 12) we can determine precisely each qN -coefficient (N > 0)
of the Heegner series. for the first 8 we calculated: 5

Heeg
T̂

(τ) = a+2q+3q2 +14q3 +26q4 +24q5 +39q6 +100q7 +51q8 + ... (38)

Theorem 13.1 The Heegner series of the Picard line T̂ ↪→ P2 (of norm 1)
is

Heeg
T̂

(τ) = a+
∞∑
n=1

∑
0<d|n

d2 ·
[(

d

3

)
+

(
n/d

3

)] · qn (39)

We have to prove the items A) and B). We start with the
Proof of B). The dimension of the vector space M3(Γ0(3), χ) will be calcu-
lated with a formula of Cohen/Oesterlé [C-O].

Proposition 13.2 ([C-O]) For k ∈ Z it holds that

dimSk(Γ0(N,χ))− dimM2−k(Γ0(N,χ)) =

k − 1

12
N
∏
p|N

(1 +
1

p
)−1

2

∏
p|N

λ(rp, sp, p)

+εk ·
∑

x mod N
x2≡−1 mod N

χ(x) + µk·
∑

x mod N
x2+x≡−1 mod N

χ(x)

5We determined the constant term with help of Hecke’s article [He40] §3: a = −1/18
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Thereby is rp the exponent of p in the prime decomposition of N , and sp is
the p-exponent of the führer f(χ) of the character χ. Moreover the authors
of [C-O] defined

λ(rp, sp, p) =


pr
′
+ pr

′−1, if 2sp ≤ rp = 2r′

2pr
′
, if 2sp ≤ rp = 2r′ + 1

2prp−sp , if 2sp > rp

εk =


0, if kodd
−1
4 , if 2sp ≤ rp = 2r′ + 1

1
4 , if 2sp > rp

µk =


0, if k ≡ 1 mod 3
−1
3 , if k ≡ −1 mod 3

1
3 , if k ≡ 0 mod 3

Corollary 13.3 It follows that dimM3(Γ0(3), χ3) = 2.

Proof of A)6. We have to set N = 3, k = −1, χ = χ3. Then:

f(χ3) = 3, r3 = 1, s3 = 1, ε−1 = 0, µ−1 =
−1

3
and dimS−1(Γ0(3), χ3) = 0,

hence

0− dimM3(Γ0(3), χ3) =

−2

12
· 3 · (1 +

1

3
)− 1

2
λ(1, 1, 3) + 0− 1

3
·

∑
x mod 3

x2+x≡−1 mod 3

χ3(x);

finally: − dimM3(Γ0(3), χ3) =
−2

3
− 1

2
· 2− 1

3
χ3(1) = −2.

�

Proof of B). It is easy to see, that in F2,1 the only vectors of F-norm −1
are

±
(

1
1
0

)
,±
(

1
−1
0

)
,±
(

0
0
1

)
Preimages in O2,1 of norm 2 along the residue map are

±
(

1
1
0

)
,±
(

1
−1
0

)
,±
(√−3

0
1

)
(40)

All other norm 2 vectors in O2,1 are Γ(
√
−3)-congruent to one of them. We

can draw two of the three orthodiscs of the above vectors (green):

6The proof (including reference [C-O]) was found by my Ex-Doctorand Christian Schön
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(41)

The (green) diagonal disc D is a Γ-reflection disc, pointwise fixed by the

reflection σ =
(

0 1 0
1 0 0
0 0 1

)
.

The quotient curves of the three orthodiscs of the vectors (40) on the
Eisenstein Congruence Surface P2 are all three visible. They must be S4-
reflection lines on P2. For instance σ goes down to an effectively on P2

acting element of order 2 leaving pointwise fixed the (green) image line L of
D. It goes through two of the double points of the quadrilateral (look back
to Picture (1.2) and also to Proposition 3.5 at the end of Subsection 3.2):

(42)

Altogether: The Heegner divisor H2 has precisely 3 curves on P2. They
do not belong to the Γ(

√
−3)-branch divisor on P2. Therefore

H2 = L1 + L2 + L3.

�
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