ORBITALE INVARIANTEN UND MODULFORMEN

R.-P. Holzapfel Humboldt Universität, Berlin

2. Dez. 2005

1 Etwas "General Non-Sense"

 \mathcal{F} orbitale Kategorie:

 $Ob(\mathcal{F}), Mor(\mathcal{F}) \supseteq EMor(\mathcal{F})$ "endliche Morphismen" (Teilkategorie),

Gradabbildung $deg: EMor(\mathcal{F}) \to \mathbb{N}$, multiplikativ:

$$\deg(g \circ f) = \deg(f) \cdot \deg(g)$$

$$f: Z \to Y, g: Y \to X$$
, endlich.

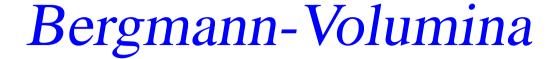
Orbitale Invarianten

Def inition 1.1 *Eine* **orbitale Invariante** *auf* \mathcal{F} *in einer* \mathbb{Q} -*Algebra* R *ist eine gradverträgliche Abbildung* $h: Obj(\mathcal{F}) \longrightarrow R$, *d.h.*

$$h(Y) = \deg(f) \cdot h(X) = [Y : X] \cdot h(X)$$

für alle $f: Y \to X \in EMor(\mathcal{F})$.

Funktoriell: $\mathcal{F} \longrightarrow (R, \cdot)^{opp}$



 $\mathbb{B} = G/K \subset \mathbb{P}^N$ hermitischee symmetrischer Gebiet, G Lie-Gruppe (zusammenhängend), K maximale kompakte Untergruppe,

$$Ob\mathcal{F}: X_{\Gamma} := \Gamma \backslash \mathbb{B}, \ \Gamma \ \mathsf{Gitter},$$

d.h. diskrete Untergruppe von $Aut_{hol}\mathbb{B}$ mit endlichem Kovolumen (Γ -Fundamentalbereich hat endliches Volumen bzgl. G-invarianter Metrik auf \mathbb{B} (Bergmann-Metrik).

 $EMor(\mathcal{F})$: endliche Überlagerungen $X_{\Gamma_1} \to X_{\Gamma_2}$,

induziert durch Inklusionen $\Gamma_1 \subseteq \Gamma_2$.

Fixiere G-invariante Volumenform auf \mathbb{B} . Das Kovolumen ist eine orbitale Invariante für \mathcal{F} in \mathbb{R} :

$$Ob(\mathcal{F}) \longrightarrow \mathbb{R},$$

$$X_{\Gamma} \to vol(\Gamma)$$

(Volumen eines Γ -Fundamentalbereiches)

$$vol(\Gamma_1) = [X_{\Gamma_1} : X_{\Gamma_2}] \cdot vol(\Gamma_2) = [\Gamma_2 : \Gamma_1] \cdot vol(\Gamma_2),$$
 für Gitter $\Gamma_1 \subseteq \Gamma_2$.

2 Eine analytische orbitale Inva-

riante

$$\mathbb{P}^n \supset \mathbb{B}^n : |z_1|^2 + \dots + |z|^2 < 1,$$

n-dimensionaler komplexer Einheitsball

Wirkung der unitären Gruppe

 $\mathbb{U}((n,1),\mathbb{C})\subset \mathbb{G}l_{n+1}(\mathbb{C})$, Picardsche

Modulgruppe des imaginär quadratischen

Zahlkörpers K: kommensurabel mit der

vollen Picardschen Modulgruppe

$$\Gamma_K = \mathbb{SU}((n,1),\mathfrak{O}_K) := \mathbb{U}((n,1),\mathbb{C}) \cap \mathbb{S}l_{n+1}(\mathfrak{O}_K),$$
 \mathfrak{O}_K Ring der ganzen Zahlen in K .

Effektive wirkend:

$$\mathfrak{PU}((n,1),\mathfrak{O}_K)=\mathbb{P}\Gamma_K.$$

Picardsche Modulvarietät: $X_{\Gamma} = \Gamma \backslash \mathbb{B}^n$, Γ eine Picardsche Modulgruppe (effektiviert); quasiprojektive Varietät, existiert "kleinste" algebraische Kompaktif izierung, die **Baily-Borel Kompaktif izierung** \hat{X}_{Γ} , projective normale Varietät;

Orbitale Kategorie $Pic = Pic^n$ (bei f ixiertem n).

Orbitale Teilkategorien zu Kongruenzuntergruppen (vollständig):

Kongruenzuntergruppe $\Gamma(\mathfrak{a})$, $\mathfrak{a} \subseteq \mathcal{O}_K$ Ideal, abgeschlossen unter komplexer Konjugation:

$$0 \to \Gamma(\mathfrak{a}) \to \Gamma = \Gamma_K \to \mathbb{SU}((n,1), \mathcal{O}_K/\mathfrak{a})$$
 exact

Natürliche Kongruenzuntergruppen:

$$\mathfrak{a}=m\mathcal{O}_K$$
, $m\in\mathbb{N}_+$.

$$Pic^{nat}$$
, Objekte: $X_{\Gamma}(m):=\Gamma(m)\backslash \mathbb{B}$ bzw. $\hat{X}_{\Gamma}(m)$

Picardsche natürliche Kongruenzvarietäten der Dimension n.

Gemischte Euler-Produkte

n = 2, Picardsche Modulf lächen,

$$D_K:=D_{K/\mathbb{Q}}$$
 Diskriminante,

$$L(s, \chi_K) = \prod_{p} (1 - \frac{\chi_K(p)}{p^s})^{-1} = \sum_{n=1}^{\infty} \frac{\chi_K(n)}{n^s}$$

Dirichletsche L-Reihe von K

mit Dirichlet-Character

$$\chi_K(n) = (\frac{D_K}{n}) \in \{0, \pm 1\}$$
 (Jacobi symbol)

Produkt-Abschnitte

$$\zeta^{(m)}(s) := \prod_{p|m} (1 - \frac{1}{p^s})^{-1};$$

$$L^{[m)}(s,\chi_K) := \prod_{p \nmid m} (1 - \frac{\chi_K(p)}{p^s})^{-1}$$

$$\delta_{K,m} := egin{cases} rac{1}{4}, & ext{if } 2 \mid m, D_K, \ 1, & ext{else}; \end{cases}$$

gemischtes Euler-Produkt: $\zeta^{(m)}(s)^{-1} \cdot L^{[m)}(s,\chi_K)$,

Theorem 2.1 (Dzambic, H., 2005): Die Abbildung (Funktor)

$$X_{\Gamma_K}(m) \mapsto \delta_{K,m} \cdot m^8 \cdot \prod_{p|m} (1 - \frac{1}{p^2}) \cdot \prod_{p \nmid m} (1 - \frac{\chi_K(p)}{p^3})^{-1}$$

ist eine orbitale Invariante

$$Pic^{nat} \longrightarrow \mathbb{R}.$$

für natürliche Picardsche Kongruenzf lächen.

Ablösung von Singularitäten:

Ablösung ist eine spezielle Modif ikation: Ersetzen von Flächen-Punkten durch jeweils eine glatte Kurve, so daß sich die Flächen-Singularitäten vereinfachen zu aussschließlich abelschen (zyklischen) Quotienten-Singularitäten.

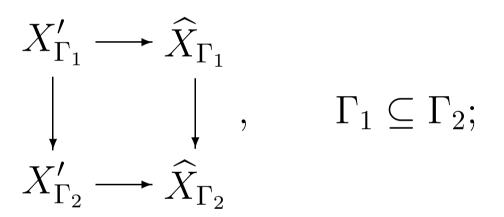
Eindeutig für nicht-zyklische Singularitäten.

Flächen, für die eine solche Ablösung existiert, sowie die abgelösten Singularitäten heißen

ablösbar.

Eigenschaften

1. verträglich mit endlichen (Überlagerungs-) Morphismen von $Pic = Pic^2$.



2. Ablösung ist minimale Singularitätenauf lösung für Spitzenpunkte reiner Kongruenzf lächen (neat).

- 3.) σ -Prozess für glatte F lächenpunkte;
- 4.) Auf lösung der Kurvensingularitäten der Verzweigungskurve von $\mathbb{B} \to \Gamma \backslash \mathbb{B}$.

Ablösungs-Morphismen $X'_{\Gamma} \to \hat{X}_{\Gamma}$,

birational, partielle Singularitäten-Auf lösungen, abgelöste Objekte X'_{Γ} bilden orbitale Kategorie Pic'.

Zusammen mit: \widehat{Pic} (alle $\widehat{X_{\Gamma}}$), \widehat{Pic} (alle $X_{\Gamma} = \Gamma \backslash \mathbb{B}$) neue orbitale Kategorie $Pic = Pic^2$. EMor(Pic): alle durch $\Gamma_1 \supseteq \Gamma_2$ induzierten endlichen Morphismen.

Orbitale Flächen

(Natürlich) gewichtete F lächen (Uludag):

$$\mathbf{X} := (X, w), w : X \to \mathbb{N}_+ \cup \{\infty\},$$

X algebraische/analytische F läche, w wird **Gewichts-Abbildung** genannt.

Galois Gewichte

Y glatte F läche, Gruppe G wirke eigentlich diskontinuierlich (lokal endlich) auf Y, X = Y/G Quotientenf läche, hat höchstens Quotienten-Singularitäten.

$$w_G: X \longrightarrow \mathbb{N}_+, \quad x = yG \mapsto \#Stab_G(y) < \infty;$$

Beispiel 3.1 $\mathbf{X}_{\Gamma} = \Gamma ackslash \mathbb{B}$ offene orbitale Picard-F läche,

□ Picardsche Modulgruppe.

Galois-endliche Morphismen: $Y \rightarrow X$:

 $\mathbf{Y}=(Z/H,w_H)$, $\mathbf{X}=(Z/G,w_G)$, Z glatte F läche, $H\subseteq G\subseteq \mathrm{Aut}\ Z$, getragen von endlicher Überlagerung $Y\to X$.

Orbitale Morphismen: getragen von Galoisendlichen, offenen (analytischen) Einbettungen, Ablösungen, Kompositionen aus allen.

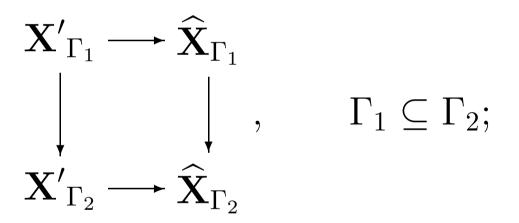
Beispiel 3.2 Orbitale Isomorphien.

Erweiterung: Zusammenklebungen von orbitalen Objekten bzw. Morphismen.

endliche orbitale Morphismen: lokal Galoisendlich.

Beispiel-Diagramm

Orbitale Kategorie Pic: getragen von Objekten aus Pic.



horizontal: orbitale Ablösungen, vertikal: endliche orbitale Morphismen,

Ablösungs-Gewichte

Zur gegebenen Picardschen Modulgruppe Γ_2 existiert reiner (neat) Normalteiler Γ_1 von endlichem Index: X'_{Γ_1} glatt,

oben: "triviale Gewichte" (= 1) auf X_{Γ_1} ,

unten: Galois-Gewichte auf X_{Γ_2} ,

 ∞ für Kompaktif izieruns-Punkte.

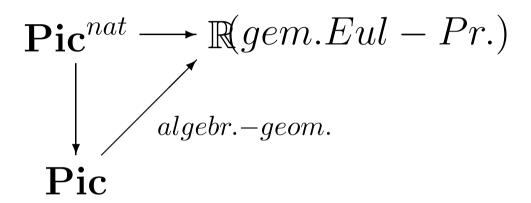
Objekte: orbitale Picard-Flächen \mathbf{X}'_{Γ} , $\widehat{\mathbf{X}}_{\Gamma}$, \mathbf{X}_{Γ} , Morphismen (-Halbgruppe), erzeugt durch

- offene orbitale Einbettungen $\mathbf{X}_{\Gamma} \hookrightarrow \widehat{\mathbf{X}}_{\Gamma}$, orbitale Ablösungen $\mathbf{X}'_{\Gamma} \to \widehat{\mathbf{X}}_{\Gamma}$,
- orbital endliche: $\mathbf{X}_{\Gamma_1} \to \mathbf{X}_{\Gamma_2}$, $\widehat{\mathbf{X}}_{\Gamma_1} \to \widehat{\mathbf{X}}_{\Gamma_2}$, $\mathbf{X}'_{\Gamma_1} \to \mathbf{X}'_{\Gamma_2}$, $\Gamma_1 \subseteq \Gamma_2$ von endlichem Index.

 Γ , Γ_1 , Γ_2 Picard modular.

Bezeichnung der orbitalen Kategorie: Pic.

Erweiterung der orbitalen gemischten Euler-Produkt-Invar.



Explizit, über Ablösungen, Berechenbarkeit topologischer Invarianten: Euler-Zahl, Signatur, arithmetisches Geschlecht Picardscher Modulf lächen.

Proportionalitäts-Theory, äquivariante K-Theorie.

Beispiele orbitaler Picard-Flächen:

1.)
$$\Gamma = \mathbb{P}\Gamma_K(\sqrt{-3}), K = \mathbb{Q}(\sqrt{-3})$$

Eisenstein-Zahlen, $\hat{X}_{\Gamma} = \mathbb{P}^2$ projektive Ebene; gewichted (nichttrivial): **Orbitale**

Picard-Eisenstein-Ebene \hat{X}_{Γ} with orbitalem Picard-Zyklus gtragen von 6 Geraden durch 4 Punkte in allgemeiner Lage.

2.) $\Gamma = \mathbb{P}\Gamma_K(1+i)$, $K = \mathbb{Q}(i)$ Gaußsche Zahlen, $\hat{X}_{\Gamma} = \mathbb{P}^2$ projektive Ebene; gewichted (nichttrivial): **Orbitale Picard-Gauß-Ebene** \hat{X}_{Γ} mit **orbitalem Apollonius-Zyklus** getragen von einer Quadrik und drei Tangenten.

4 Orbitale Picard-Kurven

Explizite Orientierung: Plücker-Formeln für ebene projektive Kurven C mit (höchstens) Kurven-Spitzen oder transversalen Selbstschnitten (Doppelpunkte) als singulären Punkten. Plücker-Relation:

$$d(d-1) - 2\delta - 3\kappa = d^* = 2d + (2g-2) - \kappa, \quad (1)$$

g: Kurven-Geschlecht, d: Grad von C, d^* (Anzahl der Tangenten durch einen äußeren allgemeinen Punkt; δ : Anzahl der Doppelpunkte von C;

 κ : Anzahl der Kurven-Spitzen.

Vergiß' Relation zwischen Grad d,

Geschlecht g, δ und κ .

 Γ Picardsche Modulgruppe des Körpers K, $\mathbb{D} \subset \mathbb{B}$ K-linear eingebettete vollständige Scheibe; $D_{\Gamma} :=$ $\Gamma \setminus \mathbb{D} \subset X_{\Gamma}$ ist eine algebraischec Kurve auf der Picardschen Modulf läche X_{Γ} . Sie wird (Flächeneingebettete) Picard curve genannt. Modelle: $D_{\Gamma} \subset X_{\Gamma}$ (open), Kompaktif izierungen: $\hat{D}_{\Gamma} \subset \hat{X}_{\Gamma}$, $D'_{\Gamma} \subset X'_{\Gamma}$. Eine **orbitale Picard curve** ist ein Paar $\mathbf{D}_{\Gamma} := (\mathbf{U}, D_{\Gamma})$, wobei U eine offene Umgebung von D_{Γ} auf X_{Γ} . Wir unterscheiden diese Objekte nicht, wenn wir zu kleineren Umgebungen übergehen

Genauer:

Die orbitalen Picard-Kurven \mathbf{D}_{Γ} , $\hat{\mathbf{D}}_{\Gamma}$, \mathbf{D}_{Γ}' sind Keime orbitaler Picard-F"ächen längs der Picard-Kurven. Letztere sind Shimura-Kurven, (übrigens def iniert über \mathbb{Q}).

Kategorie Pic^1 der orbitale Picard-Kurven: Objekte wie oben; (orbitale) Morphismen: induziert durch (orbitale) Morphismen von Pic durch Einschränkung auf Kurven-Umgebungen (alles gewichtet).

Pic¹ bezeichnet die Kategorie der orbitalen Picard-Kurven.

Wir benötigen weitere Ablösungen zur algebraisch-geometrischen Konstruktion orbitaler Invarianten von \mathbf{Pic}^1 .

Def inition 4.1 Seien $\mathbb{D} \subseteq \mathbb{B}$, Γ wie oben; Wir nennen Γ \mathbb{D} -rein, gdw. Γ rein ist, und für alle $\gamma \in \Gamma$ gilt: $\gamma(\mathbb{D}) = \mathbb{D}$ oder $\gamma(\mathbb{D}) \cap \mathbb{D} = \emptyset$.

 $P \in \mathbb{D}$ ist ein Γ -kritischer Punkt, gdw. es ein Element $\gamma \in \Gamma$ gibt, so daß: $\gamma(\mathbb{D}) \neq \mathbb{D}$ und $P \in \gamma(\mathbb{D}) \cap \mathbb{D}$.

z.B. $\Gamma_{\mathbb{Z}}$ -Fixpunkt auf \mathbb{D} (elliptischer Punkt).

Satz 4.2 Für jede Scheibe $\mathbb{D} \subset \mathbb{B}$ enthält die Picardsche Modulgruppe Γ (alles wie oben) einen \mathbb{D} -reinen Normalteiler Γ_0 von endlichem Index.

Satz 4.3 Jede offene Picardkurve D_{Γ} hat nur endlich viele kritische Punkte.

Korollar 4.4 Jede Picardsche Modulkurve $D_{\Gamma} \subset X_{\Gamma}$ hat eine endliche Überlagerung $C \subset X_{\Gamma_0}$ ohne kritische Punkte.

Kommutative Diagramme

 $D'_{\Gamma_0} \xrightarrow{\sigma's} \hat{D}_{\Gamma_0}$ Gewicht 1 Ablösungen: A Galois $D'_{\Gamma} \longrightarrow \hat{\mathbf{D}}_{\Gamma}$

 σ -Prozeß in jedem Punkt von X_{Γ_0} , der über einem kritischen Punkt auf D_{Γ} liegt. unten: Galois

. – p.28/49

- 1.) Kompaktif izierung \mathbf{D}'_{Γ} ;
- 2.) Auf lösung der Kurven-Singularitäten von \hat{D}_{Γ} ;
- 3.) Kurven-Singularitäten werden "abgelöst" durch abelsche F lächen-Singularitäten, gespeichert auf \mathbf{D}_{Γ}' .

Alle neu-konstruierten orbitalen Objekte, Einbettungen, Überlagerungen, Ablösungen in die Kategorie Pic^1 orbitaler Picard Kurven aufnehmen.

Theorem 4.5 Es existieren zwei algebraisch-geometrisch konstruierte orbitale Invarianten

 $\mathbf{Self}: \mathbf{Pic^1} \to \mathbb{Q},$

 $\mathbf{Eul}: \mathbf{Pic}^1 o \mathbb{Q},$

Sie heißen orbitale Selbstschnitt- bzw. orbitale Euler-Invariante.

Rational modif izierte Selbstschnitte bzw. Eulerzahlen glatter kompakter Flächen-Kurven.

Explizit auf Ablösungen.

5 Relativ-Orbitale Proportionalität:

Theorem 5.1 Die beiden orbitalen Invarianten sind Q-linear abhängig. Genauer gilt die folgende Orbitale Proportionalitäts-Relation:

$$Eul = 2 \cdot Self$$

auf Pic^1 .

Weitere orbitale Invarianten:

$$0 \neq \mathbf{h} : \mathbf{Pic}^1 \longrightarrow \mathbb{Q}$$

erfüllen, nach Def inition, orbitale Gradformel

$$\mathbf{h}(\mathbf{D}) = [\mathbf{D} : \mathbf{C}] \cdot \mathbf{h}(\mathbf{C})$$

mit orbitalem Grad

$$[\mathbf{D}:\mathbf{C}] := \frac{w(\mathbf{D})}{w(\mathbf{C})} \cdot [C:D]$$

für orbital endliche Morphismen D/C.

6 Arithmetisch-orbitale-Divisoren

 \mathbb{Q} -Vektorraum $\mathbf{Div}^{ar}\hat{\mathbf{X}}_{\Gamma}$ der **orbitalen Divisoren**: erzeugt durch alle (arithmetischen) orbitalen Picard-Kurven auf $\hat{\mathbf{X}}_{\Gamma}$. Die rationalen Schnittprodukte irreduzibler Kurven auf normalen kompakten F lächen (Mumford, Fulton) werden orbitalisiert und \mathbb{Q} -linear fortgesetzt zu **orbitalen Schnittprodukten**

Def inition 6.1 $<\cdot>: Div^{ar}\hat{X} \times Div^{ar}\hat{X} \longrightarrow \mathbb{Q}$ durch

$$<\mathbf{\hat{C}}\cdot\mathbf{\hat{D}}>:=rac{<\hat{C}\cdot\hat{D}>}{w(\mathbf{\hat{C}})w(\mathbf{\hat{D}})}$$
.

Für endliche orbitale Überlagerungen $\mathbf{f}:\hat{\mathbf{Y}}\to\hat{\mathbf{X}}$ in \mathbf{Pic}^2 hat man auch \mathbb{Q} -lineare orbitale direkte und inverse Bild- Homomorphismen

$$\mathbf{f}_{\#}: \ \mathbf{Div}^{\mathbf{ar}} \hat{\mathbf{Y}} \longrightarrow \mathbf{Div}^{\mathbf{ar}} \hat{\mathbf{X}}, \quad \mathbf{f}^{\#}: \ \mathbf{Div}^{\mathbf{ar}} \hat{\mathbf{X}} \longrightarrow \mathbf{Div}^{\mathbf{ar}} \hat{\mathbf{Y}}$$

Einschränkend auf orbitale endliche Überlagerungen orbitaler Picard-Kurven $\hat{\mathbf{D}}/\hat{\mathbf{C}}$. Erstere werden def iniert durch

$$\mathbf{f}_{\#}\hat{\mathbf{D}} := [\hat{\mathbf{D}} : \hat{\mathbf{C}}] \cdot \hat{\mathbf{C}}, \quad (\hat{C} = f(\hat{D})).$$

Das orbital inverse Bild von $\hat{\mathbf{C}}$ ist nichts anderes als der reduzierte Urbild- Divisor $f^{-1}C$, komponentenweise versehen mit den Gewichten auf $\hat{\mathbf{Y}}$. In orbitaler Schreibweise setzen wir $\mathbf{f}^{\#}\hat{\mathbf{C}} := \mathbf{f}^{-1}\hat{\mathbf{C}}$

Projektions-Formel:

$$<\mathbf{f}_{\#}\mathbf{B}\cdot\mathbf{A}> = <\mathbf{B}\cdot\mathbf{f}^{\#}\mathbf{A}>$$

für alle arithmetischen orbitalen Divisoren $\mathbf A$ auf $\hat{\mathbf Y}$ bzw. $\mathbf B$ auf $\hat{\mathbf X}$.

Normen

Für $V \in \mathcal{O}_K^3$, < V, V > positiv bzgl. der hermiteschen (2,1)-Metrik, die den Ball $\mathbb{B} = \mathbb{P}(\mathbb{R} \otimes V)^-$) def iniert, sei

$$\mathbb{D}_V = \mathbb{P}(V^\perp) \cap \mathbb{B}$$
 (Scheibe)

Def inition 6.2 Wir sagen, daß $N \in \mathbb{N}_+$ eine Norm von \hat{D}_{Γ} ist, gdw. $D_{\Gamma} = \Gamma \backslash \mathbb{D}_V$ und $N = \langle V, V \rangle$. Die Norm-Menge (unendlich) von \hat{D}_{Γ} ist:

Def inition 6.3 Für $N \in \mathbb{N}_+$ wird der (reduzierte) Weil-Divisor

$$H_N = H_N(\hat{X}_{\Gamma}) := \sum_{N \in \mathcal{N}(\hat{D}_{\Gamma})} \hat{D}_{\Gamma}$$

N-ter Heegner-Divisor auf \hat{X}_{Γ} genannt. Mit den Gewichten auf $\hat{\mathbf{X}}_{\Gamma}$ erhalten wir den N-ten orbitalen Heegner-Divisor $\mathbf{H}_{\mathbf{N}} = \mathbf{H}_{\mathbf{N}}(\hat{X}_{\Gamma})$ auf $\hat{\mathbf{X}}_{\Gamma}$. Wir führen die orbitalen Heegner-Funktionale

$$\mathbf{h}_{N_{ullet}}\colon \operatorname{\mathbf{Div}} \mathbf{\hat{X}}_{\Gamma} \longrightarrow \mathbb{Q}, \ \mathbf{\hat{C}} \mapsto <\mathbf{\hat{C}} \cdot \mathbf{H}_N>$$
,

ein.

Theorem 6.4 Dual erhalten wir unendlich viele orbitale Invarianten

$$\mathbf{h}_N = < . \ , \mathbf{H}_N >: \ \mathbf{Pic}^1 \longrightarrow \mathbb{Q},$$

eine für jedes natürliche N>0.

Beweis: über orbitales direktes und inverses Bild, längs endlicher orbitaler Überlagerungen (orbitale Projektionsformel).

Zusätzlich setzt man:

$$\mathbf{h}_0 := \mathbf{Eul}.$$

7 Modul-Formen

Frage: Sind die h_N algebraisch oder linear abhängig?

Für jede orbitale Picard-Kurve $\hat{\mathbf{D}}_{\Gamma}$ def inieren wir im Ring der formalen Potenzreihen $\mathbb{Q}[[q]]$ die Heegner-Reihe

$$\mathbf{Heeg}_{\mathbf{\hat{D}}_{\Gamma}} \,:= \sum_{N=0}^{\infty} \mathbf{h}_N(\mathbf{\hat{D}}_{\Gamma}) \cdot q^N$$
 ,

Zusammengefaßt erhalten wir:

Theorem 7.1

$$\mathbf{Pic^1} \longrightarrow \mathbb{Q}[[q]], \ \hat{\mathbf{D}}_{\Gamma} \mapsto \mathbf{Heeg}_{\hat{\mathbf{D}}_{\Gamma}}$$

ist eine orbitale Invariante mit Werten im obigen Ring der formalen Potenzreihen.

Wir erinnern an die klassischen Kongruenz-Untergruppen

$$\Gamma_0(m) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{S}l_2(\mathbb{Z}); \ c \equiv 0 \ mod \ m \}$$

der Modulgruppe $\mathbb{S}l_2(\mathbb{Z})$, die auf der oberen Halbebene $\mathbb{H} \subset \mathbb{C}$ wirkt. Ebenso an die (Dirichlet) Charaktere $\chi = \chi_K : \mathbb{Z} \to \{0, \pm 1\}$ der quadratischen Zahlkörper K. Sie faktorisieren durch die Restklassenringe der Körper-Diskriminanten. Eine holomorphe Funktion $f = f(\tau), \tau \in \mathbb{H}$, wird

Modufform vom Gewicht $k \in \mathbb{N}$, Niveau $m \in \mathbb{N}$,

und vom Nebentypus χ genannt, wenn sie folgende Funktional-Gleichungen erfüllt:

$$f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k \chi(d)^k f(\tau) \quad \forall \ (\substack{a \ b \ c \ d}) \in \Gamma_0(m);$$

(und f setzt sich regulär auf alle Spitzen fort). Der Raum dieser Modulformen wird mit $\mathcal{M}_k(m,\chi)$ bezeichnet. Es ist ein endlichdimensionaler \mathbb{C} -Vektorraum.

Beispiel 7.2 . Gewicht k=3, Niveau $m=4=|D_{K/\mathbb{Q}}|$, Dirichlet- Charakter $\chi=\chi_K$ des Gauß schen Zahlkörpers $K=\mathbb{Q}(i)$.

$$\mathcal{M}_3(4,\chi) = \mathbb{C}\vartheta^6 + \mathbb{C}\vartheta^2\theta$$

mit

$$artheta:=\sum_{n\in\mathbb{Z}}q^{n^2}=1+2\sum_{n>0}q^{n^2},$$
 (Jacobi),

$$\theta := \sum_{0 \le u \text{ odd}} \sigma(u) q^u = q \cdot \prod_{m=1}^{\infty} (1 - q^{4m})^4 \prod_{n=1}^{\infty} (1 + 2q^n)^4,$$

(Hecke).

Heegner-Reihe von Ĉ:

$$\mathbf{Heeg}_{\hat{\mathbf{C}}}(\tau) := \sum_{N=0}^{\infty} \mathbf{h}_{N}(\hat{\mathbf{C}}) \cdot q^{N}, q = \exp(2\pi i \tau),$$

$$Im \ \tau > 0$$

Theorem 7.3 Die Heegner-Reihen sind elliptische Modulformen aus $\mathcal{M}_3(D_{K/\mathbb{Q}}, \chi_K)$.

Zum Beweis nutzen wir die orbitale Eigenschaft für Heegner-Reihen. Wir f inden in jedem Falle eine \mathbb{D} -reine endliche Überlagerung von $\hat{\mathbf{C}}$ $\Gamma \setminus \mathbb{D}$. Auf diesem reinen Niveau erhalten wir eine "Kudla-Cogdell-Reihe", welche bereits als Modulform des genannten Typs bekannt ist. Teilen wir durch den orbitalen Grad, so bleibt diese Qualität für die Ausgangsreihe erhalten.

Korollar 7.4 Für einen festen Körper K ist der \mathbb{Q} -Vectorraum, der durch alle Heegner-Modulformen $\operatorname{Heeg}_{\hat{\mathbf{D}}_{\Gamma}}$, $\hat{\mathbf{D}}_{\Gamma} \leftarrow \hat{\mathbf{X}}_{\Gamma} \in \operatorname{Pic}_{K}^{1}$, erzeugt wird, endlich-dimensional.

Beweis : $\mathcal{M}_3(D_{K/\mathbb{Q}}, \chi_K)$ ist ein endlich-dimensionaler Vektorraum.

Korollar 7.5 Die orbitale Heegner-Reihe $\operatorname{Heeg}_{\hat{\mathbf{D}}_{\Gamma}}(\tau)$ ist eindeutig bestimmt durch $\dim_{\mathbb{C}}\mathcal{M}_3(D_{K/\mathbb{Q}},\chi_K)$ ihrer (ersten) Fourier-Koeff izienten.

Ablesbar von orbitaler F läche:

Picard-Apollonius-Beispiel

$$\mathcal{M}_{3}(4,\chi) \ni \mathbf{Heeg}_{\hat{\mathbf{D}}}(\tau)$$

$$= -\frac{1}{8} \cdot \vartheta^{6} - \frac{17}{2} \cdot \vartheta^{2}\theta,$$

$$= \sum_{N=0}^{\infty} \left((\frac{3N}{2} - \frac{1}{8})a_{2}(N) + 3\sum_{m=1}^{N} \sigma(m)a_{2}(N-m) \right) q^{N}.$$

D: gewichtete Quadrik des orbitalen Apollonius Zyklus der the projectiven Ebene;

 $\sigma(m)$: Summe der Teiler von m;

 $a_2(k)$: Anzahl der $\mathbb Z$ -Lösungen von $x^2+y^2=k$.

Orbitale Hilbert-F lächen

Heegner-Reihen (analog konstruiert) liegen in $\mathcal{M}_2(D_{K/\mathbb{Q}}, \chi_K)$.

Für reine Modulgruppen erhält man Hirzebruch-Zagier-Reihen.

Beispiel. $K = \mathbb{Q}(\sqrt{2})$, $\hat{\mathbf{C}}$: gewichtete Kreislinie im orbitalen "Cartesius-Zyklus der projectiven (orbitalen Hilbert-)Ebene:

$$\mathbf{Heeg}_{\hat{\mathbf{C}}}(\tau) = -1 + 2 \cdot \sum_{N=1}^{\infty} \left(\sum_{d|N} \chi_K(d) d \right) q^N \in \mathcal{M}_2(8, \chi),$$

(Eisenstein-Reihe)

Zusammenfassung:

Explizite Konstruktion von Heegner-Reihen:

- 1.) Präzise Klassif ikation orbitaler Picard-
- F lächen $\hat{\mathbf{X}}_{\Gamma}$;
- 2.) Finde eine Basis von $\mathcal{M}_3(D_{K/\mathbb{Q}}, \chi_K)$;
- 3.) Bestimme alle $\hat{\mathbf{D}}_1,...,\hat{\mathbf{D}}_r$ auf $\hat{\mathbf{X}}_{\Gamma}$ von kleiner Norm;
- 4.) Berechne die ersten Fourier-Koeff izienten von $\mathbf{Heeg}_{\hat{\mathbf{D}}}(\tau)$ mit Hilfe von $\mathbf{Self}(\hat{\mathbf{D}})$ und orbitalen Schnittzahlen von $\hat{\mathbf{D}}$ mit $\hat{\mathbf{D}}_1,...,\hat{\mathbf{D}}_r$.

Geometrische Interpretation:

Abzählung (mit deg-Multiplizität) orbitaler Picard-Kurven fester Norm N auf einer orbitalen Picard-Fläche.

Speziell auf orbitalen Picard-Ebenen gilt

$$\mathbf{Heeg}_{\hat{\mathbf{D}}}(\tau) = 2 \cdot \mathbf{Self}(\hat{\mathbf{D}}) + \mathbf{deg} \, \hat{\mathbf{D}} \cdot \sum_{N=1}^{\infty} (\mathbf{deg} \, \mathbf{H_N}) q^N$$

mit ebenen orbitalem Kurven-Grad

$$\mathbf{deg} = rac{\mathbb{P}^2 - Kurvengrad}{orbitales\ Kurvengewicht}$$

für irreduzible orbitale ebene Kurven (linear fort-

setzen