Main Comparison

1. Notations and conventions

1.1. Let F be a number field. The results of this chapter also hold for the function field of a smooth projective absolutely irreducible curve over a finite field, once the invariant trace formulaestablished for number fields in Chapters III-V-is established for such a function field. Let G be a connected reductive linear algebraic group over F. Let M_0 be a fixed minimal Levi subgroup of G over F. Let \mathcal{L} denote the set of Levi subgroups of G over F that contain M_0 . It is a finite set. Usually we will let M denote an element of \mathcal{L} . Let \mathcal{L}^M be the set of Levi subgroups over F contained in M (so that $\mathcal{L} = \mathcal{L}^G$), $\mathcal{L}(M)$ the set of Levi subgroups of G over F that contain M (so that $\mathcal{L} = \mathcal{L}(M_0)$, $\mathcal{P}(M)$ the set of parabolic subgroups of G over F with Levi component M, and A_M the maximal split torus in the center of M.

all v where $(vesp. \gamma(M))$ where $(vesp. \gamma(M))$ Write F_v for the completion of F at the place v. For for each valuation v of F, we fix a maximal compact subgroup K_v of the group $G(F_v)$ of F_v -valued points of G. We can choose K_v to be hyperspecial for almost all v. See [Ti79] for the definition of hyperspecial. For each place v of Let over we write $\mathbb{H}(G(F_v))$ for the algebra of K_v -finite functions in the convolution algebra $C_c^{\infty}(G(F_v))$ and specific compactly supported smooth functions on the group $G(F_v)$. It will be referred to as the Hecke algebra of $G(F_v)$. A choice of Haar measure dx_v on $G(F_v)$ is implicit. If S is a finite set of places extension for F, put $F_S = \prod_v F_v$ and $G(F_S) = \prod_v G(F_v)$.

We let \mathbb{A} denote the adèle ring of F. Put $\mathbb{H}(G(F_S)) = \bigotimes_{v \in S} \mathbb{H}(G(F_v))$, the Hecke algebra of compactly supported smooth K_S -finite functions on $G(F_S)$, where $K_S = \prod_{v \in S} K_v$. Multiplying $f \in \mathbb{H}(G(F_S))$ by the characteristic function 1_{K^S} of $K^S = \prod_{v \notin S} K_v$ we obtain a C_c^{∞} -function on $G(\mathbb{A})$, the group of \mathbb{A} -valued points of G. Put $\mathbb{H}(G(\mathbb{A}))$ for the union of all $\mathbb{H}(G(F_S)) \otimes 1_{K^S}$ over 06. EX all S such that K_v is hyperspecial for all $v \notin S$.

We shall relate objects associated with the inner form G to analogous objects on G' = GL(n)Let us recall the definition.

1.3. DEFINITION. The group G (as in 1.1) is an inner form of G' = G(G) over F if there is an isomorphism $\eta: G \to G'$ over an algebraic extension of F such that, for every $\theta \in \operatorname{Gal}(\overline{F}/F)$, the composition $\eta_{\theta} = \eta^{-1} \circ \theta \circ \eta$ equals conjugation, $\operatorname{Int}(a_{\theta})$, by an element a_{θ} in G. The group G is then the multiplicative group of a central simple algebra over F. If a'= QLM) then

We can choose η such that $\eta(M_0)$ contains the standard (diagonal) minimal Levi subgroup of G'. Furthermore, we may assume that the restriction of η to A_{M_0} is defined over F. where G' = GL(n).

1.4. Our aim is to compare the trace formula of G with the trace formula of G', for matching test functions $f \in \mathbb{H}(G(\mathbb{A}))$ and $f' \in \mathbb{H}(G'(\mathbb{A}))$. It suffices to consider $f = \bigotimes_v f_v$ and $f' = \bigotimes_v f'_v$. We take $f_v = f'_v$ under the isomorphism $G(F_v) \simeq G'(F_v)$ for all places $v \notin S_{\text{ram}} = \{\text{places where } \}$ G is not split. Denote the local correspondence of conjugacy classes by $\gamma \mapsto \gamma'$ (thus if γ, γ' are semisimple, their characteristic polynomials are equal). More precisely, if $\{\gamma\}$ is a conjugacy class, or a G(F)-orbit in G(F), then $\{\eta(\gamma)\}$ is a G'(F)-conjugacy class. It is this class that is represented